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Abstract
This paper introduces NoRefER, a novel referenceless quality
metric for automatic speech recognition (ASR) systems. Tra-
ditional reference-based metrics for evaluating ASR systems
require costly ground-truth transcripts. NoRefER overcomes
this limitation by fine-tuning a multilingual language model for
pair-wise ranking ASR hypotheses using contrastive learning
with Siamese network architecture. The self-supervised NoRe-
fER exploits the known quality relationships between hypothe-
ses from multiple compression levels of an ASR for learning
to rank intra-sample hypotheses by quality, which is essential
for model comparisons. The semi-supervised version also uses
a referenced dataset to improve its inter-sample quality rank-
ing, which is crucial for selecting potentially erroneous sam-
ples. The results indicate that NoRefER correlates highly with
reference-based metrics and their intra-sample ranks, indicating
a high potential for referenceless ASR evaluation or a/b testing.
Index Terms: Speech Recognition, Referenceless ASR Quality
Estimation, Semi-Supervised Learning, Contrastive-Learning

1. Introduction
Automatic Speech Recognition (ASR) is considered to be the
future means of communication between humans and machines.
This field has made significant progress over the last few years
with the advent of Deep Neural Networks [1, 2]. Modern ASR
systems rely on large amounts of annotated speech to learn
accurate speech representation and recognition, and they can
achieve remarkable accuracy for resource-rich languages like
English. The performance of ASR systems usually depends on
two factors, the accuracy of the output produced as well as the
processing speed of the ASR. The most commonly used evalua-
tion metric for ASR systems is Word-Error-Rate (WER), which
calculates errors on the word level and requires annotated re-
sources as ground-truth transcripts that may not always be avail-
able or accurately reflect the ASR output’s quality.

ASR quality estimation without transcripts follows a two-
stage framework, including feature extraction and WER predic-
tion. Most of the research in this field used hand-crafted fea-
tures to build linear regression-based algorithms [3]. NoRefER,
a novel referenceless quality metric for ASR systems, is intro-
duced in this paper to reduce the necessity of manual processes,
and to present a measure for evaluating ASR performance with
limited or no ground-truth references. The NoRefER refer-
enceless quality metric provides a much-needed solution to
the limitations of traditional reference-based metrics through
fine-tuning a multi-language language model (LM) with con-
trastive learning and pair-wise ranking (Fig. 1). First, a ref-
erenceless training dataset of ASR hypothesis pairs is formed
from the pairwise combinations of unique outputs of OpenAI’s

Whisper ASR model [4] with six different compression lev-
els. The higher the compression level gets, the lower the qual-
ity is expected. This dataset is used for self-supervised con-
trastive learning using a Siamese architecture [5]. Then, the
fine-tuned LM is used as a shared backbone with the super-
vised task on a referenced dataset. The two pairwise ranking
branches are used to improve the performance of the proposed
metric for inter and intra-sample ranking by leveraging both
datasets. The intra-sample and inter-sample pair-wise quality
ranking decisions of the referenceless metric are validated on
several blind test datasets in various languages in comparison
with the perplexity metric from XLM-RoBERTa-Large [6]. All
models and source-codes required for reproducing the exper-
imental results are available here: https://anonymous.
4open.science/r/Interspeech-NoRefER-6887

This paper is an extension to our previous work [7] where a
novel method was proposed for self-supervision of the ASR hy-
pothesis quality by utilizing multiple compression levels of an
ASR model to train a multi-language referenceless ASR quality
estimation metric with contrastive learning using a Siamese net-
work architecture and pair-wise ranking. The unique contribu-
tions of this extended work can be listed as follows: i) applying
semi-supervised learning to improve the self-supervised met-
ric’s performance on inter-sample ranking by using two corpora
with and without reference transcriptions; ii) demonstrating the
improved significant potential of the proposed metric against
the perplexity from the state-of-the-art multi-lingual LM, re-
garding their correlation with WER scores and their ranks.

2. Related Work
Reference-based evaluation metrics are among the most widely
used methods to evaluate the performance of ASR systems. The
most common metrics are WER and phoneme error rate (PER).
WER measures the proportion of words in the reference that are
not recognized correctly, whereas PER measures the proportion
of phonemes that are not recognized correctly [8]. Both met-
rics require a ground-truth reference transcript to compare the
ASR(s) outputs. Their main limitation is the dependence on the
existence of a reference transcript, where a poor reference can
also negatively affect the accuracy of the evaluation.

Referenceless evaluation metrics for ASR do not rely on
a ground-truth reference. Some existing referenceless evalu-
ation metrics include confidence scores and confidence-based
fusion [9, 10, 11]. Confidence scores are usually generated by
the ASR system and are used to rank alternative hypotheses.
These scores are not practical for the black-box ASR systems
unless the model is designed to output the confidence score. The
confidence-based fusion combines multiple outputs from differ-
ent ASR systems to produce a single output with improved qual-
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Figure 1: General framework of NoRefER. i) Dataset generation. Six compression levels of OpenAI’s Whisper [4] are used as ASR
models to compute all pair-wise combinations of different quality outcomes. ii) Multi-task supervised-learning with self-supervised
learning in pairwise ranking. It fine-tunes a pre-trained language model with contrastive learning of semi-supervised hypothesis pairs.

ity. However, they are dependent on the particular ASR system
being used and cannot capture the full context of the ASR out-
put; and therefore, they may not be accurate in some instances.

Previous research on ASR quality estimation has mainly
focused on supervised regression or ordinal classification of
speech and language features [12, 10, 13, 9]. For example,
[3] used a bidirectional transformer language model to estimate
ASR quality by modeling the empirical distribution of WER
through a neural zero-inflated Beta regression layer. Ali and Re-
nals [14] who did not have access to the ASR system, utilized a
multistream end-to-end architecture with acoustic, lexical, and
phonotactic features to estimate WER. Sheshadri et al. [15] pro-
posed a BERT-based architecture with speech features for bal-
anced ordinal classification to estimate WER. However, none of
these referenceless ASR quality estimators were solely based on
language features and were not trained with references. On the
other hand, Namazifar et al. [16] leveraged the robustness of
warped language models against transcription noise to correct
the transcriptions of spoken language, which resulted in a 10%
reduction in WER for both automatic and manual transcriptions.
While they could use the distance with improved transcription
for ASR quality estimation, they did not study that use-case.

Lastly, the WMT Quality Estimation Shared Task [17] is a
well-known evaluation framework for quality estimation (QE)
metrics in machine translation (MT). The task recently also
includes ranking the quality of machine-generated translations
without access to reference translations. This is done by training
quality estimation models on parallel sentences with human-
annotated quality scores. As an outcome of the WMT Shared
Task, various referenceless QE metrics have emerged in the MT
domain, including COMET-QE [18]. COMET-QE also utilizes
contrastive-learning to fine-tune a pre-trained multi-lingual LM
for MT quality estimation to distinguish between high and low-
quality parallel MT hypotheses. However, the fine-tuning of
COMET-QE relies on and is limited by the existence of a
human-evaluation dataset or ground-truth references. Whereas,
in this work, self-supervision in contrastive-learning is achieved
via exploiting the known quality relationships without costly

human annotations to compose a training dataset for the metric.

3. Methodology
The proposed method utilizes a pre-trained language model that
is fine-tuned using contrastive learning, employing a Siamese
network architecture for pair-wise quality ranking decisions. To
achieve this, multi-task learning is utilized, with a shared back-
bone that processes unique pair combinations from two sets of
datasets for training and validation. The first task focuses on
self-supervised learning by exploiting known quality relation-
ships between multiple compression levels of an ASR model.
The second task employs supervised learning for inter-sample
comparison, utilizing a dataset with ground-truth. By multi-
tasking self-supervised and supervised learning, the proposed
method offers a semi-supervised approach to train an LM for
the quality ranking of the intra- and inter-sample hypotheses.

3.1. Dataset generation

To train and validate the proposed referenceless quality metric
with self-supervision, unique outputs from an ASR model [4]
are utilized to form pairwise combinations that can be used for
contrastive-learning. Multiple compression levels are used as
a proxy for quality, where higher model compression levels in-
dicate lower-quality transcriptions. The process of extracting
unique pairs involves selecting two ASR hypotheses, one with
higher quality and one with lower quality, for the same speech
and combining them into a single pair. These pairs are shuffled
and placed into mini-batches for training and validation sets. In-
consistent pairs, for which the exact reverse pair also exists, are
dropped. Each pair’s training and validation loss is weighted us-
ing the Word Error Rate (WER) between the paired hypotheses.
The model is penalized more for incorrect pair-wise ranking de-
cisions when the distance between two hypotheses is high, as it
is more acceptable to make a pair-wise ranking mistake when
they are close. By fine-tuning the proposed Siamese network
using this approach, the quality metric can be trained and vali-
dated effectively without requiring ground-truth transcriptions.
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3.2. Self-supervised learning

The proposed method utilizes a pre-trained cross-lingual lan-
guage model (LM) with a Siamese network architecture, fol-
lowed by a dense encoder that reduces the embeddings pro-
duced by the LM to a single scalar logit. This logit is then used
to compare the outputs of the Siamese network. The pre-trained
LM in this architecture is MiniLMv2, a smaller and (2.7x) faster
language understanding model with 117M parameters distilled
from XLM-RoBERTa-Large [19], which has 560M parameters.
The dense encoder has two linear layers with a 10% dropout
ratio and a non-linear activation function in-between.

To fine-tune the pre-trained LM on a pair-wise ranking task
with contrastive learning, a self-supervised learning method that
trains a model to distinguish between positive and negative ex-
amples, the proposed method utilizes ASR outputs to generate
pairs that can be compared to predict the one with higher qual-
ity. The contrastive-learning process uses the shared network
to take a pair as input and output a logit for each. These logits
are then subtracted from each other, and a Sigmoid activation
function is applied to their difference to produce a probability
for binary classification of their qualities. The Adafactor [20]
optimizer is used with its default parameters and a learning rate
of 1e-5 for fine-tuning the LM on this pair-wise ranking task
using Binary Cross-Entropy (Log-Loss) weighted by the WER
in-between pairs. Eq. 1 shows the self-supervised loss.

Lself = − 1

N

N∑

i=1

W(Pi) log(σ(M(Pi+)−M(Pi−))) (1)

where W(.) is the WER in-between pairs, σ(.) is the Sigmoid
activation, M(.) is the output of the model. N is the number of
pairs, and Pi+ and Pi− show the positive and negative samples
of each pair, respectively. By utilizing this contrastive-learning
process, the LM can learn a high-level representation of pairs
that is discriminative of their quality. This approach can ef-
fectively train a referenceless quality metric, allowing accurate
intra-sample hypothesis comparisons without references.

3.3. Semi-supervised learning

The NoRefER method extends its self-supervised fine-tuning
to a semi-supervised version by introducing an additional Log-
Loss term (Fig. 1). The supervised batch of pairs used for this
task includes pairwise combinations of inter-sample hypothe-
ses for non-parallel speech samples, where the quality relation-
ship and the reference are known and can be quantified using
reference-based ASR quality metrics (such as WER). In con-
trast to the self-supervised loss term, the losses of the super-
vised pairs are not weighted by the distance between hypothe-
ses but by the positive-class weight of randomly formed pairs.
To maximize the efficiency of the limited supervised hypothe-
ses, the pairwise combinations of inter-sample hypotheses are
formed by self-concatenating each mini-batch of supervised hy-
potheses, shuffling the concatenated column, and re-assigning
the pairwise ranking binary classification labels based on the
WERs calculated from ground-truth references. This approach
randomizes the formation of pairwise combinations of super-
vised inter-sample hypotheses during the training process. With
this framework, the training loss is comprised of two objectives:
the self-supervised loss (Lself ) on a generated referenceless
dataset, and the supervised loss (Lsup) on supervised hypothe-
ses. Eq. 2 shows the supervised loss, and Eq. 3 shows the sum
of both losses for multi-tasking in semi-supervised learning.

Lsup = − 1

N

N∑

i=1

log(σ(M(Pi+)−M(Pi−))) (2)

LSEMI = αLsup + (1− α)Lself (3)

where α is a weight parameter for combining the two losses and
was set to 0.5 by default. The supervised and self-supervised
mini-batches are equal and set to 128 during the training. This
semi-supervised training enables NoRefER to learn from a large
amount of self-supervised and a limited amount of supervised
information, leading to improved performance on the reference-
less ASR quality estimation. Combining the self-supervised and
supervised information enables the model to generalize better to
unseen data, resulting in a more robust and accurate reference-
less ASR quality metric. This is particularly useful for compar-
ing non-parallel hypotheses, e.g. when prioritizing production
hypotheses for post-editing in active-learning while extending
the ASR corpus to get the most improvement from fine-tuning.

4. Experiments
In this section, the experimental settings and results are pre-
sented. All experiments were performed on a desktop computer
running 64-bit Ubuntu 22.04 LTS. The computer was equipped
with an AMD Ryzen 5900X CPU and 64GB of memory, and
an Nvidia GeForce RTX 3090 GPU with 24GB of GPU mem-
ory. Due to the use of a pre-trained LM, the hyperparameters of
the architecture were fixed except for the hidden-layer size (32)
and the drop-out ratio (10%) of the dense encoder, which are
set manually without an extensive hyper-parameter search. The
Adafactor optimizer is also used with its default parameters and
1e-5 learning-rate suggested for fine-tuning MiniLMv2 [19].

The referenceless metric was trained using a large self-
supervised corpus incorporating unique transcription hypothe-
ses from OpenAI’s Whisper ASR model [4] for each audio sam-
ple available at CMU MOSEI and MOSEAS datasets [21, 22].
This corpus comprised 134 hours of speech from YouTube
videos spoken by 2,645 individuals. Almost half of the speeches
in this corpus were in English, while the remaining duration was
distributed uniformly among French, Spanish, Portuguese, and
German languages. The proposed metric was self-supervised
using unique pairs of speech transcripts, with one hypothesis in
each pair known to have a higher quality than the other based on
the compression level. After removing inconsistent pairs, there
were 800,340 self-supervised parallel ASR hypothesis pairs in
total, of which 20% were reserved as a validation-set for early-
stopping. An additional batch of data from the Common Voice
training dataset was used to facilitate semi-supervised train-
ing. This batch included 148,393 unique hypotheses transcribed
with top commercial ASR(s), and their WER was calculated
to evaluate the transcription quality. The trained referenceless
metric was blind-tested on multiple speech datasets, including
Common Voice (English, French, Spanish) [23], Libri-Speech
(English) [24], and a proprietary dataset containing 11 hours
of meetings in-between non-native English speakers. The tran-
scription hypotheses were obtained from top commercial ASR
engines, namely AWS, AppTek, Azure, Deepgram, Google, and
OpenAI’s Whisper-Large, for each speech segment in them.

As a baseline, the referenceless metric was compared with
the perplexity metric obtained from the state-of-the-art multi-
lingual LM, XLM-RoBERTa Large [6]. The perplexity metric
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Table 1: The self and semi-supervised NoRefER metric’s performance on Common Voice [23] and Libri-Speech [24] datasets, and a
proprietary dataset, against the perplexity obtained from XLM-RoBERTa [6], regarding their correlations with WER ranks and scores.

Test Dataset - Language Model Correlation with WER ranking Correlations with WER score itself
Pearson Spearman Kendall Pearson Spearman Kendall

Common Voice Test - English NoRefER-Self 0.56 0.48 0.55 0.42 0.33 0.24
NoRefER-Semi 0.53 0.44 0.52 0.48 0.53 0.40
XLMR-Large 0.26 0.22 0.26 0.02 0.21 0.15

Common Voice Test - French NoRefER-Self 0.48 0.40 0.48 0.38 0.33 0.24
NoRefER-Semi 0.48 0.39 0.48 0.50 0.56 0.41
XLMR-Large 0.20 0.17 0.20 0.02 0.20 0.14

Common Voice Test - Spanish NoRefER-Self 0.58 0.52 0.58 0.49 0.40 0.30
NoRefER-Semi 0.56 0.48 0.55 0.53 0.45 0.34
XLMR-Large 0.25 0.22 0.25 -0.01 0.20 0.14

Libri-Speech Test Clean - Eng. NoRefER-Self 0.42 0.35 0.42 0.30 0.13 0.09
NoRefER-Semi 0.57 0.47 0.56 0.42 0.51 0.37
XLMR-Large 0.22 0.17 0.21 -0.06 0.13 0.09

Proprietary - Non-Native Eng. NoRefER-Self 0.37 0.31 0.37 0.10 0.33 0.22
NoRefER-Semi 0.38 0.32 0.38 0.16 0.44 0.31
XLMR-Large 0.29 0.25 0.30 -0.02 -0.02 -0.01

measures the average number of predictions a language model
must make to generate a speech transcript. A lower perplexity
indicates a higher quality speech transcript, suggesting that the
language model is more confident in its predictions. Table 1
compares the proposed referenceless metric with the perplex-
ity metric on different datasets and languages; where it consis-
tently outperformed the baseline in all the blind test datasets,
demonstrating its superiority in estimating ASR output quality.
The table presents various correlation coefficients obtained by
the proposed referenceless metric with the actual WER ranks
and scores in datasets from multiple languages. The Pearson
correlation coefficient measures the linear relationship between
two variables, the Spearman correlation coefficient is a non-
parametric measure of the monotonic relationship between two
variables, and the Kendall correlation coefficient measures the
agreement between two rankings and is non-parametric. For all
correlation coefficients, the scores range from -1 to 1, with -1
indicating a strong negative correlation, 0 indicating no corre-
lation, and 1 indicating a strong positive correlation [25]. The
default SciPy [26] implementations is used for their calculation.

In the ablation study, the performance of NoRefER was
compared using two different training methods. Firstly, NoRe-
fER was trained using only self-supervised learning on a refer-
enceless dataset of pairs, as described in Section 3.1 (NoRefER-
Self). Secondly, NoRefER was trained using the multi-tasked
semi-supervised learning approach proposed (NoRefER-Semi).
As shown in Table 1, the study results indicated a strong correla-
tion between the two techniques. However, the NoRefER-Self
model had limitations regarding inter-sample comparisons, as
it showed weaker correlations with WER scores. In contrast,
the NoRefER-Semi model had less correlation with WER rank-
ing and was dependent on supervised data. The self-supervised
NoRefER model was fine-tuned in 26 minutes and 47 seconds,
while the semi-supervised version took 59 minutes and 16 sec-
onds. The experiments measured an average duration of 0.095
seconds model inference time per hypothesis sample, which
was the same for both the Self and Semi versions of NoRefER.

The pre-trained NoRefER weights and architecture, and the
Python scripts required for reproducing all experimental results
are open-sourced at this repository: https://anonymous.
4open.science/r/Interspeech-NoRefER-6887

5. Discussion
The experimental results demonstrate the effectiveness of the
proposed referenceless quality metric and its potential impact
in the ASR field. The evaluation of the referenceless metric re-
vealed a strong correlation with the uncased and unpunctuated
WER ranks and scores of the top commercial engines across
samples. The high correlation with WER scores and ranks in-
dicates the inter-sample and intra-sample reliability of the ref-
erenceless metric, respectively. When the contrastive learning
is only performed between intra-sample hypotheses via self-
supervision, NoRefER-Self achieves lower correlations with
WER ranks than WER scores. In contrast, NoRefER-Semi also
correlates well with WER scores due to the supervised inter-
sample pairs used in its training. The experimental findings
demonstrate that the referenceless metric can provide meaning-
ful quality comparisons between different ASR models, serv-
ing as a viable alternative evaluation metric for ASR systems.
Moreover, these results confirm the applicability of the refer-
enceless metric over reference-based ones when comparing or
A/B testing multiple ASR models/versions on production sam-
ples (for which ground-truth references are often unavailable)
and selecting challenging ones for debugging and post-editing.

6. Conclusion
This work proposes a multi-lingual referenceless quality met-
ric for ASR systems, which is useful when no ground truth is
available to evaluate the quality of ASR outputs. The approach
uses a pre-trained language model (MiniLMv2), fine-tuned on
two datasets of varying quality using contrastive learning and
pair-wise ranking. The results of the experiments demonstrate
that the referenceless metric outperforms traditional reference-
based and perplexity metrics from pre-trained language mod-
els. In addition, when tested on a blind dataset containing out-
puts from commercial ASR engines, the referenceless metric
strongly correlates with the WER scores and ranks of these
engines. This referenceless metric has the potential to signif-
icantly enhance the improvement and evaluation lifecycle of
ASR systems in real-world applications. The future-research
can focus on transfer-learning the proposed metric by incorpo-
rating audio-based features for referenceless quality estimation.
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