
Improved Contextualized Speech Representations for Tonal Analysis

Jiahong Yuan1, Xingyu Cai2, Kenneth Church3

1University of Science and Technology of China, China
2Google Inc., USA

3Northeastern University, USA
jiahongyuan@ustc.edu.cn, xingyu.develop.cai@gmail.com, kenneth.ward.church@gmail.com

Abstract
We propose fine-tuning wav2vec2.0 with a cross-entropy loss
to classify tones in an utterance on a frame-by-frame basis. Our
study demonstrates that this approach not only improves tone
classification accuracy but also generates frame-level represen-
tations suitable for tonal analysis. By using these representa-
tions, we established that the third-tone-sandhi-rising tone in
Mandarin speech differs from the lexical rising tone, and the
third tone that doesn’t undergo sandhi differs from the third tone
that’s not in a sandhi context. Our findings suggest that third-
tone sandhi in Mandarin Chinese involves a continuous shift
from Tone3 to Tone2, rather than a categorical change. 1

Index Terms: speech analysis, tone, contextualized representa-
tions, alignment, classification

1. Introduction
Mandarin Chinese is a tone language with four lexical tones
(Tone1 to Tone4) and a neutral tone (Tone5). The phonetic real-
izations of tones can vary greatly due to factors such as speaker
physiology, speaking style and rate, and contextual influences.
As a result, recognizing tones in running speech automatically
is challenging. In recent years, the use of deep learning models
for Mandarin tone recognition has been successful. In particu-
lar, the method of fine-tuning wav2vec2.0 with a CTC (Connec-
tionist Temporal Classification) loss has achieved impressive re-
sults.

In this paper, we present a method for improving the clas-
sification of Mandarin tones by finetuning wav2vec2.0 using a
cross-entropy loss for all frames in an utterance. The aim of
this approach is to address the issue of peaky output distribu-
tions associated with CTC, enabling the use of the model’s rep-
resentations for tonal analysis. Our study demonstrates that the
proposed method not only enhances tone classification accuracy
but also produces frame-level representations that are suitable
for tonal analysis. To illustrate the effectiveness of these rep-
resentations, we conduct a case study on third tone sandhi in
Mandarin Chinese.

2. Related work
2.1. Contextual variation of tones and third tone sandhi

The fundamental frequency, F0, is the primary acoustic cue for
tones in Mandarin Chinese. The four lexical tones, Tone1 to
Tone4, are transcribed using a five-point scale of tonal tran-
scription where 1 represents the lowest pitch and 5 represents
the highest pitch. Specifically, the four tones are transcribed as

1This work was done when the authors were at Baidu Research,
USA.

55, 35, 214, and 51, respectively. Besides F0, other parameters
such as duration, amplitude, and voice quality also play a role
in the production and perception of tones [1, 2]

Context plays a significant role in the phonetic realization
of tones. For instance, a lexical falling tone that appears before a
high tone and after a low tone could even be realized as rising, as
demonstrated in [3]. Numerous studies have explored contex-
tual variations of tones, considering perspectives such as coar-
ticulation [4], physiological constraints [5], and the interaction
between tone and prosodic structure [6]. Several models have
been proposed to aid in this endeavor. For instance, in the Stem-
ML model [7], tones are treated as flexible templates that can be
adjusted due to the interaction between neighboring tones and
with other components of prosody. The PENTA model [8] sim-
ulates the articulatory realization of underlying pitch targets and
provides an operational framework that enables the simultane-
ous encoding of multiple communicative functions.

Unlike tonal coarticulation, tone sandhi refers to the phono-
logical alteration of lexical tones in a linguistic context. This
is a common occurrence in Chinese dialects [9]. In Mandarin
Chinese, when a Low tone (Tone3) precedes another Low tone,
it is typically pronounced with a rising F0 contour, which is
known as third tone sandhi. This phenomenon has been exten-
sively studied in the literature, including the domain of third
tone sandhi, which examines how the sandhi is applied across
linguistic boundaries [10]. Figure 1 depicts two examples from
our research. Both words consist of three third tones, with the
first word featuring rising contours on the first two third tones,
whereas in the second word, only the second third tone has a
rising contour.

An intriguing issue regarding third tone sandhi is whether
there is an acoustic distinction between a Sandhi Rising tone
and an underlying Rising tone (Tone2). This raises the ques-
tion of whether third tone sandhi is a complete or incomplete
neutralization process. According to [11], who investigated the
third tone sandhi in a conversational speech corpus, there are
differences between an underlying Rising tone and a Sandhi
Rising tone in terms of F0 rise magnitude and duration of the
rise. [12] also showed that the F0 maximum of a Sandhi Ris-
ing tone is lower than that of an underlying Rising tone. De-
spite the reported acoustic differences, there is no conclusive
evidence that listeners can use these subtle acoustic differences
to differentiate between the two tones.

2.2. Automatic recognition of tones

In recent years, deep learning models have been successfully
employed for Mandarin tone recognition. For example, [13, 14]
built a deep neural network using MFCCs to classify tones
in Mandarin Chinese, achieving significant improvement com-
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Figure 1: Third tone sandhi in Mandarin Chinese. The first two
tones change to rising in ”dao3 huo3 suo3”; whereas only the
second tone changes to rising in ”xiao3 liang3 kou”. F0s are
shown in blue.

pared to traditional methods that used prosodic features, even
though F0 and other pitch-related features were omitted. In a
DNN-HMM framework, [15] investigated the effectiveness of
incorporating articulatory information into tone modeling, ei-
ther by explicitly adding the articulatory features or building
phone-dependent tonal models. Their study confirmed that the
DNN model can extract useful information from the MFCC pa-
rameters for tone recognition and incorporating articulatory in-
formation can further improve tone recognition. [16] proposed
a method for tone recognition using a convolutional neural net-
work with CTC and achieved a tone error rate of 11.7% on
the Aishell-1 dataset [17]. [18] proposed a multi-scale model
that gathers information at multiple resolutions to better cap-
ture tone variations, achieving competitive results on the Chi-
nese National Hi-Tech Project 863 corpus with a tone error rate
of 10.5%. Finally, [19] reported that feeding both the Mel-
spectrogram and the short-term context segment features into
an end-to-end model could significantly improve automatic tone
recognition, with classification accuracy improving from 79.5%
to 88.7% on the Aishell-3 database [20].

2.3. Finetuning wav2vec2.0 with CTC loss for tone recogni-
tion

Wav2vec2.0 [21] is a self-supervised learning framework based
on Transformers that can learn speech representations from raw
audio data. The framework processes the speech signal with a
multilayer convolutional network to extract latent features ev-
ery 25 ms. The latent features are then fed into vector quan-
tization and transformer networks. The pre-trained models of
wav2vec2.0 can be fine-tuned for speech recognition by us-
ing labeled data and optimizing with a Connectionist Temporal
Classification (CTC) loss [22].

In a recent study, [23] fine-tuned the wav2vec2.0 frame-
work using a CTC loss to recognize suprasegmentals such as
syllables, tones, and pitch accents. The results demonstrated a
50% error reduction in Mandarin tone recognition compared to
previous studies. We believe that one of the advantages of using
wav2vec2.0 for tone recognition is the self-attention mechanism
in its Transformer component [24]. The self-attention mecha-
nism allows the model to effectively learn and model contextual
influences on tones.
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Figure 2: Output predictions from CTC are spiky. Most frames
are mapped to <blank>.

Despite its success in predicting a label sequence, the out-
put predictions from CTC are often very sparse, with most
frames being predicted as <blank>(i.e., no label). Figure 2
shows an example of the output predictions of tone recogni-
tion with CTC. As can be seen from the figure, most frames are
mapped to <blank>, and therefore, the learned representations
of these frames cannot be effectively utilized for tonal analysis.

CTC loss is designed for tasks in which the alignment of
input and output sequences is difficult to achieve, for exam-
ple, the alignment between acoustic frames and characters in
ASR. For the task of tone recognition, however, we can first
map each acoustic frame to a tone label through forced align-
ment, and then fine-tune wav2vec2.0 with a cross-entropy loss
for frame-wise classification. We expect no spiky predictions
from employing a cross-entropy loss, and therefore the learned
representations will be useful for tonal analysis.

2.4. Contextualized representations from wav2vec2.0

The pre-trained wav2vec2.0 contextualized representations cap-
ture a rich amount of information about speech, as demonstrated
by probing experiments that show their effectiveness on a wide
range of tasks [25, 26]. In our study, we found that the rep-
resentation space of a fine-tuned wav2vec2.0 model is very
different from that of a pre-trained model. Figure 3 shows a
t-SNE plot of contextualized representations from three mod-
els on a Chinese dataset: pre-trained wav2vec2.0, wav2vec2.0
fine-tuned for phone recognition, and wav2vec2.0 fine-tuned for
tone recognition. It is clear that these representations occupy
distinct spaces.

Compared to the pretrained wav2vec2.0 model, models that
have been fine-tuned encode task-specific properties in their
learned representations. For instance, a wav2vec2.0 model
that has been fine-tuned for tone recognition will capture tone-
related properties such as pitch patterns and tonal coarticula-
tion. Therefore, contextualized representations from a model
fine-tuned for tone recognition are likely to be more effective
for analyzing tones in speech than those from the pretrained
model.

3. Fine-tuning wav2vec2.0 with
cross-entropy loss for tone classification

3.1. Data and alignment

We performed our experiments on the Aishell-1 [17] dataset,
which is a widely-used benchmark for Mandarin ASR. The
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Figure 3: The space of contextualized representations from
three wav2vec2.0 models: pre-trained only, fine-tuned for
phone recognition, and fine-tuned for tone recognition.

dataset includes 165 hours of read speech in Mandarin Chinese
from 400 speakers belonging to different dialect regions, with
the majority from the northern areas. The dataset is divided into
train, dev, and test sets, containing approximately 1.7m, 200k,
and 100k tones, respectively.

An HMM-GMM based forced aligner was trained on the
dataset using the HTK toolkit. The aligner utilizes a pronounc-
ing dictionary provided in the dataset, which transcribes words
into initials and tonal finals in Pinyin, a Roman alphabet system
of phonetic transcription for Mandarin Chinese.

Using the results of forced alignment, a label sequence is
created at every 25ms for each utterance to ensure that the
same number of labels and acoustic frames are extracted by
wav2vec2.0. The frame-aligned audio and label sequences can
then be utilized to finetune wav2vec2.0 with a cross-entropy
loss.

Three label creation strategies were implemented: 1. Treat-
ing initials as part of a tone; 2. Mapping initials to a separate
label ”C”; 3. Mapping only the center frame of a tonal final or
silence to a tone or ”sil”, while mapping all other frames to ”O”.
For example:
• Label1: sil sil sil sil sil T2 T2 T2 T2 T2 T2 T2 . . .
• Label2: sil sil sil sil sil C C T2 T2 T2 T2 T2 . . .
• Label3: O O sil O O O O O O T2 O O . . .

3.2. Tone classification

The process of finetuning wav2vec2.0 with a cross-entropy loss
involves the following steps: First, a randomly initialized lin-
ear projection is added on top of the contextual representations
of wav2vec2.0 to map the representations into label tokens.
Then, the entire network is optimized by minimizing a cross-
entropy loss through finetuning. Unlike building a classifier on
all frames as independent data points, the finetuning process can
learn associations among frames in an utterance.

In our experiments, we utilized the wav2vec2.0 large model
pre-trained on 960 hours of Librispeech audio (libri960 big.pt)
for finetuning. Initially, only the output classifier is trained for
the first 10,000 updates, after which the Transformer is updated
as well. We set the max tokens to 1 million, which is equivalent
to 62.5 seconds of audio with a sampling rate of 16 kHz, and
the learning rate to 1e-5. The unit error rate on the dev set was
the metric used to determine the total number of updates.

The test set consisted of a total of 1.8 million frames. The
frame classification accuracy for Label1 and Label2 was 94.0%

Table 1: Results of fine-tuning wav2vec2.0 with CE loss for tone
classification using different label strategies, compared to fine-
tuning with CTC loss.

Loss function Labels Classification Recognition
accuracy errors

T1-T5,sil 95.5% -
cross entropy T1-T5,C,sil 95.0% -

T1-T5,O,sil 95.7% -
Sub: 5.7%

CTC T1-T5,sil 2.5% Ins: 0.4%
Del: 0.4%

and 93.5%, respectively. For Label3, the majority of frames
(1.68 million out of 1.8 million) were ”O”. Among the ”O”
frames, 99.7% were classified as either a tone or silence. Ex-
cluding the ”O” frames, the frame classification accuracy for
Label3 was 96.4%.

The test set comprises 100k tones, and we used the center
frame to calculate tone classification accuracy. Table 1 displays
the results. Additionally, we performed tone classification on
the center frames using a model fine-tuned with a CTC loss on
the same dataset. With this model, as demonstrated in section
2.3, the majority of frames were classified as <blank>, lead-
ing to an extremely low accuracy in classification. The tone
recognition error rate from the CTC model was 6.6%. A rough
comparison between the cross-entropy and CTC models can be
made by examining their classification and substitution error
rates, respectively. The cross-entropy models exhibit classifi-
cation error rates ranging from 4.3% to 5.0%, which is superior
to the CTC model’s substitution error rate of 5.7%.

4. Using contextualized representations for
tonal analysis

4.1. Clustering of tones

By fine-tuning wav2vec2.0 for frame-wise tone classification,
we can extract contextualized representations from the model
that are useful for tonal analysis. These representations were
learned in context and contain information about contextual as-
sociations and influences. Consequently, there is no need for
normalization when utilizing contextualized representations for
tonal analysis, unlike with F0 and other acoustic features.

In Figure 4, we compare the effectiveness of F0 features and
contextualized representations in clustering tones in the test set.
The F0 mean and slope of tonal contours were computed from
normalized F0s, i.e., semitones above the 5th percentile of F0s
in an utterance. The contextualized representations were ex-
tracted from the center frame of each tone and have a dimension
of 1024. We trained a PCA model on the representations of the
training set, and applied it to the test set. Figure 4 shows the first
two dimensions of the PCA projection of the test set, where the
ellipses represent 95% of the data points in a given category.
The results demonstrate that contextualized representations are
much more effective than F0 features for clustering tones.

To quantify the differences, we performed 5-means cluster-
ing on two sets of features: the two F0 features and the two
dimensions of PCA projection. We then mapped the resulting
clusters to five tones. The results showed that the clustering
accuracy was 44.4% for the F0 features and 87.7% for the con-
textualized representations on the test set. When using all 1024
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Figure 4: Tones are better separated in the space of contextual-
ized representations (bottom) than in F0 features (top).

dimensions, the clustering accuracy of the contextualized rep-
resentations increased to 93.7%.

4.2. Third tone sandhi

We cannot predict whether a third tone will undergo sandhi or
not based solely on text. Therefore, to investigate third tone
sandhi in the dataset, we treated all Tone3s in a sandhi con-
text, i.e., those preceding another Tone3, as a separate cate-
gory called Tone6. We labeled Tone6 as “O” for fine-tuning
wav2vec2.0 with a cross-entropy loss, using the strategy of La-
bel3 described in section 3.1.

Using the fine-tuned wav2vec2.0 model, we classified
Tone6 in the dataset. The training set contained 35,573 Tone6s,
of which 19,994 (56.2%) were classified as Tone2, 12,837
(36.1%) as Tone3, and the remainder as other tones or silence.
In the test set, 1,187 (56.3%) of the total 2,107 Tone6s were
classified as Tone2, and 739 (35.1%) as Tone3. Overall, more
than 90% of Tone3s in a sandhi context were classified as either
Tone2/sandhi or Tone3/non-sandhi, and the ratio between the
two was about 1.6:1. Figure 5 shows the representations (the
first two dimensions of PCA projection) of Tone2, Tone3, and
Tone6, demonstrating that some Tone6s undergo sandhi while
others do not.

To measure the similarity or distance between two tones,
we can use the label probabilities from the classification
model. Specifically, we define a metric d = logprob(Tone2)-
logprob(Tone3), where logprob(X) is the log probability of a
frame being X. The metric d measures how much more likely
the tone is Tone2 than Tone3. Figure 6 shows d values for four
types: 1. T2->T2: Tone2; 2. T6->T2: Tone3 in a sandhi con-
text and classified as Tone2 (sandhi); 3. T6->T3: Tone3 in a
sandhi context and classified as Tone3 (non-sandhi); and 4. T3-
>T3: Tone3 not in a sandhi context.

Figure 5: Representations of Tone6 (i.e., Tone3 in a sandhi con-
text), Tone2, and Tone3. Some Tone6s undergo sandhi while
others do not.

The boxplots show that T6->T2 has lower d values than T2-
>T2, which confirms previous findings that the sandhi rising
tone is different from Tone2. Interestingly, T6->T3 has higher
d values than T3->T3. Two hypotheses may explain this re-
sult. First, the difference may be due to contextual influences
on tone. T6->T3 only appears before a Tone3, whereas T3-
>T3 does not appear in that context. Secondly, it is possible
that third tone sandhi is not a categorical change, but a contin-
uous shift from Tone3 to Tone2. Further research is needed to
test these hypotheses.
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Figure 6: Boxplots of d values. Sandhi Tone3 (T6->T2) is lower
than Tone2; Non-sandhi Tone3 (T6->T3) is higher than Tone3.

5. Conclusions
The paper presents a new method to classify Mandarin tones
using the wav2vec2.0 model, which involves fine-tuning it with
a cross-entropy loss for all frames in an utterance. Our study
shows that this approach not only improves tone classification
accuracy but also enables tonal analysis through frame-level
representations generated by the model. Based on these rep-
resentations, we demonstrate that the third-tone-sandhi-rising
tone in Mandarin speech differs from the lexical rising tone, and
the third tone not undergoing sandhi also differs from that not
in a sandhi context. Our findings suggest that third-tone sandhi
in Mandarin Chinese involves a continuous shift from Tone3 to
Tone2, rather than a categorical change.
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