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Abstract
Continuous speech separation (CSS) aims to separate a long-
form signal with multiple partially overlapped utterances into
a set of non-overlapped speech signals. While most existing
CSS methods rely on the permutation invariant training (PIT)
algorithm for training and inference, we argue that one may not
need PIT at all to achieve promising CSS performance. In this
paper, we propose a novel overlap aware CSS method, which
explicitly identifies the non-overlapped segments in the long-
form input to guide the separation of overlapped segments. We
show that with the help of an external overlapping speech detec-
tion (OSD) model, an overlap-aware CSS model can be trained
without PIT. In addition, an overlap-aware inference algorithm
is proposed to greatly reduce the computational cost while pre-
serving strong performance. Experiment results show that our
proposed methods outperform the conventional stitching-based
CSS approach, with over 1 dB signal-to-noise ratio (SNR) im-
provement.
Index Terms: Continuous speech separation, overlapping
speech detection, permutation-free training

1. Introduction
With the vigorous development of speech-related human-
machine interactive techniques, speech enhancement and
separation-based frontend processing has played an increas-
ingly important role in real-world speech processing. While
speech enhancement focuses on removing the background noise
and reverberation from the speech signal, speech separation
aims at extracting the speech signals of different speakers from
the mixture signal. Compared to the former, speech separa-
tion is especially important in tackling the well-known cock-
tail party problem [1, 2], where multiple speakers are active si-
multaneously. In this scenario, speech separation faces an ad-
ditional challenge known as the permutation problem. In the
literature, two representative methods have been proposed to
solve this problem, i.e., deep clustering (DC) [3] and permuta-
tion invariant training (PIT) [4, 5]. Most existing deep learning-
based speech separation techniques have been developed based
on these two methods.

Although much progress has been achieved in the tradi-
tional speech separation task, it assumes a short utterance-level
input signal with a high overlap ratio. In contrast, real-world
conversational speech is often partially overlapped with a rela-
tively low overlap ratio, and it can be very long in scenarios such
as meetings [6]. Based on this observation, continuous speech
separation (CSS) [7, 8] has been proposed to explicitly address
the long-form speech separation problem in realistic conditions.
It aims at separating partially overlapped long-form speech into
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several overlap-free outputs of the same length. One popular
and representative CSS approach is the extension of utterance-
level PIT (uPIT) [4], namely uPIT-CSS, which consists of three
stages. First, the long-form input is divided into overlapped
short chunks via a fixed-length sliding window. Second, uPIT-
based separation is applied to each chunk. Finally, these chunk-
level separated signals are combined to form full-length sepa-
ration outputs via a stitching algorithm, where the PIT method
is applied. Albeit simple and effective, the uPIT-CSS method is
usually computationally expensive due to the highly-overlapped
sliding windows required by the stitching algorithm.

Recently, researchers have been interested in improving the
CSS method from different aspects. Some works [9, 10, 11,
12, 13] use additional modules to obtain speaker information in
the long-form speech to assist separation. Some works [14, 15,
16, 17] divide the long-form speech into blocks and utilize the
history information for separation in future blocks. Some other
works [18, 19] focus on enhancing the permutation invariant
training algorithm in the CSS task. Other works [20, 21, 22, 23]
leverages multi-modal information such as spatial correlation
and visual cues for CSS. In [24], Wang et al. propose to use
an enhancement model and a separation model to respectively
process non-overlapped and overlapped frames in the long-form
signal. However, the tight relationship between non-overlapped
and overlapped segments is not utilized.

In this paper, we propose a novel training framework
called Overlap Aware CSS. Our system includes an overlap-
ping speech detection (OSD) model and a speaker-biased sep-
aration model with an auxiliary network. The OSD model
takes the long-form speech as input to detect overlapped and
non-overlapped segments. Then each non-overlapped single-
speaker segment is leveraged as a condition to help the separa-
tion model separate the subsequent overlapped speech and de-
cide the permutation. This procedure is naturally free of the per-
mutation problem, thus getting rid of the PIT method. With the
help of the OSD model, we also propose an overlap-aware in-
ference algorithm to focus the speaker-biased separation model
on processing overlapped segments, while non-overlapped seg-
ments will be directly stitched to the separated overlapped seg-
ments. In this way, we can significantly reduce the computa-
tion cost during inference. We evaluated the proposed meth-
ods on simulated meeting-style data. Our experiments show
that our proposed methods outperform the traditional stitching-
based CSS approach by more than 1 dB signal-to-noise ratio
(SNR) improvement on the meeting-style simulation data.

2. Overlap aware CSS
Our proposed system consists of two models: a frame-level
overlapping speech detection model and a speaker-biased sepa-
ration model.
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Figure 1: Overall process of proposed overlap aware continuous speech separation. Overlapped segments are painted in black while
non-overlapped segments are painted in white in the output of the OSD model. Trainable modules are painted in yellow.
2.1. Overlapping Speech Detection
In our proposed method, we follow the basic assumption in
CSS [7] that at most C speakers are active simultaneously,
where C is the number of output channels. Here, we adopt
C = 2. Based on the above assumption, the permutation prob-
lem in CSS can be directly resolved by using a deterministic
permutation P for the separated signals in each overlapped seg-
ment. Our intuition is that each non-overlapped segment and the
subsequent overlapped segment next to it are likely to both con-
tain the same speaker. Consequently, P can be obtained by con-
ditioning on the neighboring non-overlapped segment before
the current overlapped segment such that the shared speaker is
always separated in the first output channel.

To this end, a frame-level overlapping speech detection
(OSD) model can be used to identify overlapped and non-
overlapped segments, which is essentially a binary classifier.
While any binary classifier that provides frame-level overlap in-
formation can be used here, we adopt the block-based convolu-
tional neural network (CNN) based model [25] in this paper.

2.2. Speaker-Biased Separation
In the following discussion, we use the term “chunk” to repre-
sent the model input selected from long-form speech through
a sliding window, which may contain both overlapped and
non-overlapped “segments”. After the non-overlapped single-
speaker segments have been identified by the OSD model, we
can develop a speaker-biased separation model that is free of
the permutation problem. The proposed model takes as input a
mixture signal X and the adjacent single-speaker segment Ca

before it and generates the corresponding separated speech. As
mentioned in Section 2.1, the output permutation is determinis-
tic by ensuring that the speaker in the first output channel is the
same as in the single-speaker condition Ca. Inspired by the suc-
cess of target speech extraction [15, 16], we adopt the structure
of frequency-domain SpeakerBeam [26] as our speaker-biased
separation model, which contains Mixture Encoder EncMix(·)
for processing mixture, Auxiliary Network AuxNet(·) for pro-
cessing condition segment and Separator for generating outputs.
In order to generate multiple outputs, we increase the number
of output heads at the last layer of the original extraction model.
The training process can be formulated as follows:[

Ŝa, Ŝb

]
= Separator (EncMix(X),AuxNet(Ca)) , (1)

L = −SNR(Sa, Ŝa)− SNR(Sb, Ŝb) , (2)
where X and Ca are the input mixture and the corresponding
condition of speaker a, respectively. Ŝa and Ŝb denote the sepa-
rated speech for speakers a and b, respectively, while Sa and Sb

are the corresponding reference signals. L is the loss function.
The construction of the single-speaker condition is illus-

trated in Fig. 1. More specifically, for each windowed chunk,
a corresponding single-speaker segment is chosen as the condi-
tion by the following rule. If there is an adjacent single-speaker
segment before the chunk, it is used as the condition. When no
adjacent single-speaker segment is found before the chunk, we
will try to use the non-overlapped segment from the last chunk
if it exists. If a chunk contains the beginning of a single-speaker
segment, we use itself as its own condition. In our experiment,
all condition segments are padded or chopped to a fixed length.
We use oracle information to select conditions according to the
above rule during training.

2.3. Overlap-aware Inference
In the inference stage, our proposed model can be directly
used with the conventional chunk-wise stitching-based CSS
method [7]. During stitching, the permutation for each chunk is
adjusted by placing the first output speech in the same channel
as the conditioning speech. To find the channel of conditioning
speech, we will first use the output of overlapping speech detec-
tion model to get the timestamp of the conditioning speech, and
the non-silence channel is the channel of conditioning speech
of this chunk.

However, with the help of the OSD model, we can fur-
ther propose a novel overlap-aware stitching method, where
the separation model only processes overlapped segments.1

Then we just stitch the separated signals with unprocessed non-
overlapped segments. Since non-overlapped segments are used
as the additional condition, the permutation problem during
stitching can also be avoided.

3. Experiments
3.1. Dataset
We simulated a reverberant meeting-style data based on Lib-
riSpeech [27], which is mostly the same as that in [28, 29], ex-
cept that we did not include noise in the generated data. The
training, development, and evaluation sets contain 30,000, 900,
and 900 samples, respectively. Each sample is 90s long, con-
taining 3–5 speakers with an overlap ratio between 50% and
80%. The reverberation time ranges from 100 ms to 500 ms.

3.2. Model Configurations and Training Details
We adopt the T-F masking method for speech separation. The
size of short-time Fourier transformation (STFT) is 512-point
while the hop length is 256. The sliding window size for CSS
is 3.2 seconds. All single-speaker conditions are padded or
chopped to 1 second. The proportion of windowed chunks with

1We leave denoising and dereverberation in the future work.
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Table 2: Window-level SNR (dB) (3.2s) with different overlap ratios for different models with different stitching methods. “chunk-wise”
denotes the conventional CSS approach where each chunk is processed independently via a sliding window. “overlap-aware” denotes
only overlapped segments will be processed and then stitched with non-overlapped segments. “MACs of 90s” denotes the computational
cost of the separation model to process a 90s-long speech, while numbers in brackets show the additional computational cost of the
OSD model. The proposed methods are marked with ∗.

Model Stitching Type Overlap ratio
between windows

Overlap ratio (%) MACs of 90s (G)0–25 25–50 50–75 75–100 Avg

No Separation - - 0.00 0.00 0.00 0.00 0.00 -

BLSTM
chunk-wise 50% 13.67 9.94 8.61 7.75 9.08 292.36

0% 11.73 8.27 7.59 7.43 8.12 148.50
50% 16.99 8.86 7.60 5.38 7.98 129.94 (+ 5.57)∗overlap-aware 0% 14.62 7.55 6.68 6.98 7.88 116.02 (+ 5.57)

∗Speaker-biased BLSTM
chunk-wise 50% 14.46 11.56 9.75 8.66 10.17 290.51

0% 11.36 9.31 8.50 8.09 8.81 147.56
50% 17.39 10.41 8.91 8.28 9.90 133.73 (+ 5.57)overlap-aware 0% 17.44 10.33 8.83 8.20 9.83 110.67 (+ 5.57)

Conformer
chunk-wise 50% 17.60 12.01 9.85 8.71 10.66 270.24

0% 11.79 9.35 8.23 8.19 8.82 137.26
50% 14.05 8.17 7.34 7.90 8.50 120.11 (+ 5.57)∗overlap-aware 0% 13.93 7.92 7.05 7.55 8.21 107.24 (+ 5.57)

∗Speaker-biased Conformer
chunk-wise 50% 19.71 14.17 11.89 10.73 12.73 194.95

0% 13.75 11.07 10.14 9.76 10.57 99.02
50% 18.38 11.72 10.33 9.89 11.33 86.64 (+ 5.57)overlap-aware 0% 18.32 11.66 10.26 9.80 11.25 77.36 (+ 5.57)

0 20 40 60 80 100

train set
dev set
test set

Proportions (%):

0 0-25 25-50 50-75 75-100Overlap ratio (%):

Figure 2: Proportion of windowed chunks with different overlap
ratios. A 3.2s sliding window with 50% overlap ratio is applied.
different overlap ratios in the simulated data is shown in Fig. 2.
All experiments were conducted using the ESPnet [30] toolkit.

For the recurrent neural network (RNN)-based model, we
adopt the structure of frequency-domain SpeakerBeam [26] in
the speaker-biased separation model. Both baseline and pro-
posed models have 5 bi-directional long short-term memory
(BLSTM) blocks. Each block consists of a BLSTM layer fol-
lowed by a linear projection layer, a global LayerNorm layer,
and a tanh activation layer with the residual connection. The
input dimension is 257 for the first block and 256 for the rest
blocks. The hidden dimension of the BLSTM block is 515 for
the baseline model and 512 for the speaker-biased separation
model. The auxiliary network of the speaker-biased separation
model has the same configuration as in the frequency-domain
SpeakerBeam [26]. As a result, the baseline model has 23.05M
parameters and the proposed model has 23.01M parameters. We
set the initial learning rate to 1e−4 and use the StepLR sched-
uler, where the learning rate is decayed by a factor of 0.98 every
two epochs.

For the Conformer-based model, we use the same
Conformer-base configuration as in [8], which has 16 Con-
former encoder layers with 4 attention heads, 256 attention di-
mensions, and 1024 feed-forward network (FFN) dimensions.
For the speaker-biased separation model, we adopt the cross-
attention conformer structure proposed in [31, 32]. It consists
of two independent conformer encoders for processing the in-
put mixture and the condition respectively, followed by 8 cross-
attention conformer blocks to obtain the separation masks. Each
conformer encoder includes 8 conformer layers with 4 atten-
tion heads, 228 attention dimensions, and 512 FFN dimensions.

Similarly, each cross-attention conformer block is comprised of
a cross-attention conformer layer with 4 attention heads, 228 at-
tention dimensions, and 512 FFN dimensions. As a result, the
baseline model has 21.54M parameters and the speaker-biased
separation model has 21.43M parameters. We set the learning
rate to 2e−4 and use the warm-up learning rate scheduler with
20000 warm-up steps.

During training, each minibatch includes 8 long-form sam-
ples. All separation models are trained for 150 epochs with the
Adam optimizer [33], and the patience for early stopping is 10.

The OSD model follows the same structure and training
configuration as in [25], with 888.58K parameters. Different
from above, we directly use the 90s-long samples to train and
evaluate the OSD model. The learning rate is 1e−3 and the
batch size is 1.
Table 1: Evaluation of the overlapping speech detection model.

Class Acc Recall Precision F1

Overlapped speech 0.900 0.887 0.790 0.828
Non-overlapped speech 0.900 0.906 0.951 0.927

3.3. Evaluation on Simulated Data
Table 1 shows the performance of our OSD model. Since the
model is not completely accurate in predicting overlapped seg-
ments and some extremely short overlapped segments may oc-
cur, inspired by the one-dimensional dilation-erosion algorithm
in [34], we perform a similar dilation-erosion post-process
smoothing strategy on the predicted overlapped segments with
the kernel size set to 5 frames. In this way, we can eliminate
extremely short overlapped segments.

Table 2 shows the results of baseline models and our
speaker-biased separation models on the simulated dataset2. We
compare different stitching strategies when processing the long-
form speech, where a stitching window with a 0% or 50% over-
lap ratio can be used. After generating the long-form sepa-
rated signals, the window-level SNR is computed by dividing

2Results on LibriCSS: https://earthmanylf.github.io/
oacss/libricss.pdf
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Table 3: Window-level SNR (dB) (3.2s) for oracle and predicted
overlapping speech information. A sliding window with a 50%
overlap ratio is applied.

Model Stitch Type Oracle Overlap ratio (%)
0–25 25–50 50–75 75–100

Speaker-biased
BLSTM

chunk-wise ✓ 15.17 11.82 9.89 8.76
✗ 14.46 11.56 9.75 8.66
✓ 19.85 10.67 9.23 8.53overlap-aware
✗ 17.39 10.41 8.91 8.28

Speaker-biased
Conformer

chunk-wise ✓ 20.27 14.05 11.8 10.71
✗ 20.05 14.03 11.79 10.61
✓ 20.41 11.94 10.64 10.14overlap-aware
✗ 18.38 11.72 10.33 9.89

the long-form signal into chunks using a 3.2s sliding window.
We calculate the average SNR based on the speaker overlap ra-
tio in each chunk.

The results show that both proposed Speaker-biased
BLSTM and Speaker-biased Conformer models outperform
their baseline counterparts, with over 1 dB SNR improvement.
In addition, when the conventional chunk-wise stitching method
is applied with a 0% window overlap, our proposed models can
still achieve strong performance that is comparable to or even
better than the baseline performance when a 50% window over-
lap is used. Furthermore, we evaluate the effectiveness of the
proposed overlap-aware stitching method. It can be seen that
the computational cost is largely reduced, while the overall per-
formance is only moderately degraded. It is interesting to see
that the SNR performance in chunks with low overlap ratios (0–
25%) is even better than in the chunk-wise stitching method, es-
pecially for the BLSTM-based models. This might attribute to
the energy leakage problem when processing an almost single-
speaker signal with a speech separation model. Also, we can
observe that the proposed stitching method is not sensitive to the
window overlap ratio, which allows further reduction of compu-
tation.

Table 3 compares the performance of the speaker-biased
separation model when using oracle and predicted overlap in-
formation as the condition. While better performance can be
achieved by using the oracle overlap information, we can see
that the SNR performance gap is less than 0.3 dB in most con-
ditions with a high overlap ratio (> 25%). This also shows the
superiority of the proposed methods.
3.4. Ablation Study
We base Speaker-biased Conformer model to make ablation
studies. All the experiments use the chunk-wise stitch type,
and a 50% overlap ratio is applied. Table 4 shows the per-
formance of different condition fusion methods. We use three
widely used techniques: cross-attention [32], conditional layer
normalization (cLN) [35], and scaled activation based Speaker-
Beam [26]. All the speaker-biased separation models have sim-
ilar sizes of parameters and were trained under the same op-
timizer, which is shown in Section 3.2. It can be seen that
all the speaker-biased separation models outperform their base-
line counterparts, with over 1 dB SNR improvement. Cross-
attention model achieves the best performance among all three
speaker-biased separation models. This suggests that the cross-
attention architecture allows conformer to achieve stronger fu-
sion capabilities, compared to the other two techniques.

Table 5 shows the effects of different condition lengths and
chunk sizes on the same trained model as in Section 3.3, which
was trained with 1s condition length and 3.2s chunk size. Al-
though longer conditioning speech contains more information
about a speaker, we can see that shorter conditioning speech
does not have a significant impact on the performance of the
speaker-biased separation model. When we use 0.25s of speech

Table 4: Window-level SNR (dB) (3.2s) of ablation studies on
the performance of different condition fusion methods. A slid-
ing window with a 50% overlap ratio is applied. Stitch type
is chunk-wise. ”CA” denotes cross-attention, ”cLN” denotes
conditional layer normalization, ”SB” denotes scaled activa-
tion based SpeakerBeam.

Model Fusion
Method

Overlap ratio (%)
0–25 25–50 50–75 75-100 Avg

Conformer - 17.60 12.01 9.85 8.71 10.66

Speaker-biased
Conformer

CA [32] 19.71 14.71 11.89 10.73 12.73
cLN [35] 17.56 13.31 11.16 10.01 11.81
SB [26] 17.82 13.29 11.15 10.01 11.84

Table 5: Window-level SNR (dB) (3.2s) of ablation studies on
the performance of condition length and chunk size. The exper-
iments are based on the same cross-attention Speaker-biased
Conformer. Stitch type is chunk-wise. A sliding window with a
50% overlap ratio is applied.

Condition
Length

Chunk
Size

Overlap ratio (%)
0–25 25–50 50–75 75-100 Avg

1s 3.2s 19.71 14.71 11.89 10.73 12.73
0.5s 3.2s 19.40 14.12 11.87 10.71 12.67

0.25s 18.58 14.03 11.83 10.68 12.53

1s 2s 9.96 12.59 11.34 10.37 11.01
1s 0.80 9.07 9.20 8.91 8.09

as a condition, which is a quarter of the length of the condition-
ing speech used during training, we only get a performance loss
of 0.2 dB SNR compared to the default setting. On the other
hand, we can observe that a sufficient chunk size is crucial for
the speaker-biased separation model. Reducing the chunk size
from 2s to 1s leads to significant performance degradation in
all conditions. In addition, the model with a shorter chunk size
(1s) loses more performance at lower overlap ratios (0–25%)
than at higher overlap ratios (> 25%). This may attribute to the
energy leakage problem when processing almost overlap-free
speech with a separation model, where the separated signal in
one output channel is highly similar to that in the other. In con-
trast, using a longer chunk can effectively mitigate this issue by
providing more contextual information.

4. Conclusions
In this paper, we propose a novel CSS training framework called
overlap-aware CSS based on speaker-biased speech separation
and overlapping speech detection. The proposed framework
trains the speaker-biased speech separation model by provid-
ing a single-speaker segment to help the model determine the
permutation of outputs, thus getting rid of the PIT method. In
addition, we introduce an overlap-aware inference algorithm to
generate separated long-form speech with the help of the OSD
model. Experimental results demonstrate that our framework
outperforms the traditional stitching-based CSS approach, with
over 1 dB SNR improvement. Moreover, our models can main-
tain strong performance while largely reducing the computa-
tional cost using the proposed inference algorithm.

Future work includes investigating the denoising and dere-
verberation capabilities of the proposed model and exploring
the use of the proposed model for automatic speech recogni-
tion.
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L. Burget, and J. Černocký, “SpeakerBeam: Speaker aware neural
network for target speaker extraction in speech mixtures,” IEEE
Journal of Selected Topics in Signal Processing, vol. 13, no. 4,
pp. 800–814, 2019.

[27] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an ASR corpus based on public domain audio books,”
in Proc. IEEE ICASSP, 2015, pp. 5206–5210.

[28] C. Li, Z. Chen, Y. Luo, C. Han, T. Zhou, K. Kinoshita, M. Del-
croix, S. Watanabe, and Y. Qian, “Dual-path modeling for long
recording speech separation in meetings,” in Proc. IEEE ICASSP,
2021, pp. 5739–5743.

[29] C. Li, Z. Chen, and Y. Qian, “Dual-path modeling with memory
embedding model for continuous speech separation,” IEEE/ACM
Trans. ASLP., vol. 30, pp. 1508–1520, 2022.

[30] C. Li, J. Shi, W. Zhang, A. S. Subramanian, X. Chang, N. Kamo,
M. Hira, T. Hayashi, C. Boeddeker, Z. Chen, and S. Watan-
abe, “ESPnet-SE: End-to-end speech enhancement and separation
toolkit designed for ASR integration,” in Proc. IEEE SLT, 2021,
pp. 785–792.

[31] A. Narayanan, C.-C. Chiu, T. O’Malley, Q. Wang, and Y. He,
“Cross-attention conformer for context modeling in speech en-
hancement for ASR,” in Proc. IEEE ASRU, 2021, pp. 312–319.

[32] T. R. O’Malley, A. Narayanan, and Q. Wang, “A universally-
deployable ASR frontend for joint acoustic echo cancellation,
speech enhancement, and voice separation,” in Proc. Interspeech,
2022, pp. 3829–3833.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. ICLR, 2015.

[34] G.-B. Wang and W.-Q. Zhang, “An RNN and CRNN based ap-
proach to robust voice activity detection,” in Proc. APSIPA ASC,
2019, pp. 1347–1350.

[35] M. Chen, X. Tan, B. Li, Y. Liu, T. Qin, sheng zhao, and T.-Y. Liu,
“Adaspeech: Adaptive text to speech for custom voice,” in Proc.
ICLR, 2021.

3516


