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Abstract

Despite the rapid progress in speech enhancement (SE) re-
search, improving the intelligibility and perceptual quality of
desired speech in noisy environments with interfering speak-
ers remains challenging. This paper attempts to achieve high-
fidelity full-band SE and personalized SE (PSE) by modifying
the recently proposed band-split RNN (BSRNN) model. To
reduce the negative impact of unstable high-frequency compo-
nents in full-band speech recording, we perform bi-directional
and uni-directional band-level modeling to low-frequency and
high-frequency subbands, respectively. For the PSE task, an
additional speaker enrollment module is added to BSRNN to
make use of the target speaker information for suppressing the
interfering speech. Moreover, we utilize a MetricGAN dis-
criminator (MGD) and a multi-resolution spectrogram discrim-
inator (MRSD) to further improve the human auditory percep-
tual quality of the enhanced speech. Experimental results show
that our system outperforms various top-ranking SE systems,
achieves state-of-the-art (SOTA) SE performance on the DNS-
2020 test set, and ranks among the top 3 in the DNS-2023 chal-
lenge on the PSE task.

Index Terms— Band-split RNN, Full-band speech en-
hancement, Personalized speech enhancement

1. Introduction
Speech enhancement (SE) is an important task in speech com-
munication that aims to improve the subjective and objective
quality of speech signals. Such improvements can not only be
helpful for human listeners to better understand the contents but
also be beneficial for machine listeners to generate more ac-
curate transcriptions. In recent few years, deep learning based
SE models have made a great progress due to the emergence
of novel model architectures [1–6], efficient data simulation
and model training pipelines [7,8], and international challenges
[9, 10] with comprehensive evaluation metrics and large-scale
training data. Due to the rising demand for high-fidelity (Hi-Fi)
speech in online conferencing systems and high-definition live
streaming, recent developments in speech enhancement models
have attempted to handle super wide-band (24 kHz) and full-
band (48 kHz) speech signals [11, 12]. Moreover, since con-
ventional SE models cannot suppress the speech of interfering
speakers, personalized SE (PSE) models have also been pro-
posed [13–16] to isolate the target speaker’s voice from inter-
fering speech using target speaker’s enrollment speech.

Although previous SE and PSE models can largely improve
the quality of the desired speech signals, the performance of
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these models on full-band signals is restricted by the follow-
ing two aspects. First, in real-time speech communication,
different devices have various effective sample rates and fre-
quency responses. Some devices can precisely capture rela-
tively high-frequency (>8 kHz) information of the speech sig-
nal, while others may introduce significant distortion in the
high-frequency range. Such unpredictable device-dependent
distortion on high-frequency components can degrade the per-
formance of full-band speech enhancement. Second, the con-
ventional training objectives of SE models, such as signal-to-
noise ratio (SNR) and frequency-domain mean square error
(MSE), are not closely related to human auditory perception
and other objective perceptual metrics, which can lead to sub-
optimal SE performance.

This paper aims to tackle the problems mentioned above
by applying the band-split RNN (BSRNN) model, which was
recently introduced in [3], to full-band SE and PSE tasks. In
the modified BSRNN, the input signal’s spectrogram is initially
divided into a collection of frequency bands, which are then
converted into subband features using band-specific fully con-
nected (FC) layers. For full-band SE and PSE tasks, we per-
form bi-directional band-level modeling for subbands below 8
kHz and uni-directional modeling for subbands above 8 kHz to
mitigate the effect of high-frequency distortion introduced by
the devices. For PSE task, an additional speaker enrollment
module is added to BSRNN to make use of the target speaker
information. In addition, we use a modified MetricGAN-based
training objective [8,17] to directly optimize the model towards
the widely-used perceptual evaluation of speech quality (PESQ)
score. Furthermore, to improve the human auditory perceptual
quality of the enhanced speech, a multi-resolution spectrogram
discriminator (MRSD) [18] is also adopted in model training.
Experimental results show that our BSRNN system outperforms
various top-ranking benchmark systems in SE and achieves
SOTA results on the DNS-2020 non-blind test set in both of-
fline and online scenarios. For the PSE task, the proposed sys-
tem achieves better PDNSMOS scores on the 4th DNS-2022
blind test set than the previous SOTA system and ranks among
the top 3 in the DNS-2023 challenge on both speaker phone and
headset tracks.

This paper is an extension of our two-page grand challenge
report [19] for ICASSP DNS 2023 Challenge. Both online and
offline systems for SE and PSE tasks are considered in this pa-
per, while the two-page grand challenge report only focuses on
the online PSE task. More details of the model design, training
objectives, and experimental results are added in this paper.

The paper is organized as follows: Section 2 presents the
proposed BSRNN architecture. The training objectives are dis-
cussed in Section 3. Section 4 introduces the data simulation
and training configurations. Experimental results and analysis
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Fig. 1. The diagram of the proposed full-band PSE system. (A) The band split module. (B) The sequence and band modeling module.
(C) The estimation module. (D) The speaker enrollment module.

can be found in Section 5, and Section 6 offers the conclusion.

2. Model Architecture
The proposed system shown in Figure 1 is a frequency-domain
model composed of a band split module, a band and sequence
modeling module, a mask estimation module, and an additional
speaker enrollment module for PSE purposes. As shown in Fig-
ure 1 (A), the band split module explicitly splits the complex-
valued spectrogram of the noisy input X into a set of non-
overlapped frequency bands {Bi}Ki=1 and generates a series of
subband features {Zi}Ki=1 with band-specific FC layers. Resid-
ual long short-term memory networks (LSTMs) are utilized in
the band and sequence modeling module to conduct interleaved
modeling at both the band and sequence levels of the subband
features.

As discussed in Section 1, different recording devices can
introduce unpredictable distortions and information lost in high-
frequency components (normally >8 kHz) due to different fre-
quency responses. For example, the frequency components
above 16 kHz are missing in the spectrogram shown in Figure 1
(A). Hence, the bi-directional intra-band modeling used in orig-
inal BSRNN model [3] can be sub-optimal, as it can propagate
high-frequency distortions to lower frequencies and thereby
compromise the overall enhancement performance. To atten-
uate the effects of the high-frequency distortions in full-band
enhancement, we split the subband features Ẑ to Ẑ1 and Ẑ2,
where Ẑ1 contains the subband features below 8 kHz and Ẑ2

contains subbands above 8 kHz. Then we perform bi-directional
band-level modeling on Ẑ1 and uni-directional modeling on Ẑ2

as follows:

Q1, (h, c) = BLSTM(Ẑ1); Q2 = LSTM(Ẑ2, (h, c)) (1)

where h and c are the hidden and cell state of the low-to-high
direction obtained from the band-level modeling of Ẑ1. In the
rest of the paper, we will use BSRNN-S to denote the BSRNN
model with split band-level modeling.

After band and sequence modeling, the estimation module
uses band-specific MLPs to predict the complex-value T-F mask
M ∈ CF×T . Regarding the artifacts brought by the complex

masks, an MLP is additionally used to directly predict the tar-
get speech’s complex-valued residual spectrogram R ∈ CF×T .
The final enhanced speech is obtained by:

S̄ = M ⊙X +R (2)

where ⊙ denotes the complex-valued Hadamard product and S̄
represents the enhanced spectrogram.

In PSE task, a speaker enrollment module is utilized to ex-
tract the target speaker information from the enrollment speech
to eliminate interfering speech. Specifically, the enrollment
speech is a pre-recorded 5 to 10 seconds clean or noisy speech
segment from the target speaker, which is used to compute the
speaker embedding e ∈ RF . In the proposed model, we adopt
a pretrained speaker embedding model [20] based on ResNet34
with frozen model parameters to compute the speaker embed-
ding e. The speaker representation E ∈ RK×T×N is then ob-
tained by transforming the speaker embedding e using band-
specific 1-D convolutional layers with Tanh activation function
and repeated across the time axis. Then, we concatenate the
subband feature Z and the speaker representation E along the
feature dimension to apply band and sequence-level modeling.
Throughout the remainder of the paper, we will refer to the per-
sonalized BSRNN model as pBSRNN.

3. Training Objectives
The training objective of our model contains three parts.
Multi-resolution Frequency Loss: The first part is a multi-
resolution (MR) frequency-domain loss LMR designed by com-
bining the power-compressed amplitude mean average error
(MAE) loss and the complex-valued MAE loss with short-time
Fourier transform (STFT) windows ranging from 10 ms to 40
ms:

LMR =
1

I

∑

i

(
∥|Si|p − |S̄i|p∥1 + ∥Si − S̄i∥1

)
(3)

where S̄i and Si denote the complex spectra of the estimated
and target speech signal, respectively, i is the index of the STFT
window size from [10, 20, 30, 40] ms. We use p = 0.3 in our
implementation.

2484



MetricGAN: To directly improve the system performance on
the PESQ score, adversarial training based on MetricGAN
(MGD) [8,17] is adopted. The generator of MGD is the BSRNN
model and the discriminator in MGD D(·) attempts to predict
the normalized PESQ score:

QPESQ(S̄,S) =
PESQ(S̄,S) + 0.5

5
(4)

Note that the wide-band PESQ score is used in all experiments.
Two least-square GAN (LSGAN) [21] style training objectives
are then designed for the generator and discriminator:

LMGD
d = (1−D(S,S))2 + (QPESQ(S̄,S)−D(S̄,S))2 (5)

+ (QPESQ(X,S)−D(X,S))2

LMGD
g = (1−D(S̄,S))2 + 0.5 · LMR (6)

where LMGD
g ,LMGD

d denote the generator loss and the discrimina-
tor loss, respectively. Note that the discriminator loss contains
three signal pairs from noisy input, clean target and estimated
target to stabilize the training process.
Multi-resolution Spectrogram Discriminator: To further en-
hance the perceptual quality of the output speech, we also adopt
the multi-resolution spectrogram discriminator (MRSD) [18] in
model training:

LMRSD
d =

1

K

∑

k

(
(1−Dk(S))2 +Dk(S̄)2

)
(7)

LMRSD
g =

1

K

∑

k

(1−Dk(S̄))2 + LMR + LMMEL (8)

where LMRSD
d ,LMRSD

g are the discriminator and generator objec-
tive, respectively. LMMEL is the mean square error (MSE) be-
tween the mel-spectrograms of the target and estimated speech
signals with the number of mel filterbanks ranging from [64,
128, 256]. 6 STFT windows ([2, 4, 8, 16, 32, 64] ms) denoted
by the STFT window index k are used in our implementation.

4. Experiment Configurations
4.1. Data

Our experiments are conducted on the publicly available DNS-
2023 challenge dataset. The training data contains ∼760 hour
clean speech with speaker identity labels, ∼181 hour noise and
∼60k room impulse response (RIR) samples. We use the DNS-
2020 and DNS-2022 blind test set for evaluation.
Preprocessing: During the experiment, we found that the orig-
inal single-speaker speech utterances may contain interfering
speech from other speakers. The existence of interfering speech
can confuse the PSE model in training and result in sub-optimal
performance. To address this issue, we divide the original utter-
ances into 3-second segments and employ a pre-trained speaker
embedding model to detect the interfering speech. This is
achieved by computing the cosine similarity of speaker embed-
dings between each segment and the enrollment speech. We
removed segments with a similarity lower than 0.6 to clean up
the data.
Simulation: During training, the noisy speech signal is stimu-
lated in an on-the-fly manner. Specifically, we first sample one
target speech and one noisy segment and then mix them with
an SNR sampled from [-5, 20] dB. Note that we convolve 20%
of the speech segments with randomly selected RIR to simulate
reverberation. For the PSE task, we additionally sample and
mix an interfering speech segment with SIR ranging from [-5,

20] dB in simulation. In PSE model training, 50% of the train-
ing inputs are the mixture of target speech and noise segments,
30% of the training inputs are the mixture of target, interfering
speech and noise segments and 20% of the training inputs are
the mixture of target and interfering speech segments. All the
simulated training segments are set to be 6-second long in our
implementation.

4.2. Model

Band-spilt Scheme: We split the spectrogram into 33 sub-
bands, including twenty 200 Hz bandwidth subbands for low
frequency followed by six 500 Hz subbands and seven 2 kHz
subbands.
Hyperparameters: We use the Hanning analysis window for
STFT and set the window length and shift to 20 ms and 10
ms for the 48 kHz model, and 32 ms and 8 ms for the 16
kHz model. We set the feature dimension to N = 96 and
N = 128 for the 48 kHz and 16 kHz models, respectively.
A six-layer band and sequence modeling module with 192 di-
mensional LSTM is used in our system. The estimation mod-
ule uses the 384-dimensional MLP with Tanh activation func-
tion and a gated linear unit (GLU) [30] output layer. We use
layer normalization [31] for offline configuration and batch nor-
malization [32] for online configuration. The online pBSRNN
model has a computational complexity of approximately 14.7G
multiply-accumulate operations (MACs) per second. Using the
ONNX runtime implementation on an Intel i5 2.50GHz CPU,
the online PSE model achieves 0.42 real-time factor(RTF).
Speaker Embedding Model: The pretrained speaker embed-
ding model [20, 33]1 is used in our PSE system.

4.3. Training Pipeline

To perform non-personalized speech enhancement, we train the
BSRNN model (without the speaker enrollment module) from
scratch using the MR loss with an initial learning rate of 1e−3

for 400k iterations. Then, we finetune the model with the MGD
and MRSD training objectives for another 100k iterations. The
training of PSE model is similar to the non-personalized model,
and the only difference is that the PSE model uses the parame-
ters of the pretrained non-personalized model as initialization.

All the models are trained on 8 Nvidia P40 GPUs using
Adam optimizer with 0.98 learning rate decay for every 20k up-
dates. The model training will be stopped if the best validation
result is not achieved in 20k consecutive iterations.

5. Experimental Results
5.1. Non-personalized speech-enhancement

Table 1 compares the performance between the proposed
non-personalized SE BSRNN models and several top-ranking
benchmark models on the non-blind test of DNS-2020 chal-
lenge. It can be observed that: 1) Compared with models
trained using wide-band (16 kHz) data, the performance of
models trained on full-band data with bi-directional band-level
modeling degrades significantly (ID 6 v.s. 7, ID 16 v.s. 17),
which supports the claim that the high-frequency distortion
can degrade the full-band enhancement performance; 2) Using
bi-directional and uni-directional band-level modeling on low-
frequency and high-frequency subbands separately can improve
the performance of full-band SE models (ID 7 v.s. 8, ID 17

1https://github.com/wenet-e2e/wespeaker/blob/
master/docs/pretrained.md
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Table 1. Results on DNS-2020 no reverb / with reverb test sets. ‘-16k’ denotes model trained using 16 kHz data.

ID Model Causal
no reverb with reverb

PESQ-WB PESQ-NB SI-SNR STOI PESQ-WB PESQ-NB SI-SNR STOI
1 Noisy − 1.58 2.45 9.1 91.5 1.82 2.75 9.0 86.6
2 SN-NET [22] ✗ 3.39 − 19.5 − − − − −
3 DPT-FSNET [23] ✗ 3.26 − 20.4 97.7 3.53 − 18.1 95.2
4 TridentSE [24] ✗ 3.44 − − 97.9 3.50 − − 95.2
5 MTFAA-NET [12] ✗ 3.52 3.76 − − − − − −
6 BSRNN-16k ✗ 3.45 3.87 21.1 98.3 3.72 4.03 19.1 96.3
7 BSRNN ✗ 3.32 3.79 21.1 98.0 3.54 3.94 18.5 95.6
8 BSRNN-S ✗ 3.42 3.85 21.3 98.3 3.61 3.95 19.0 95.8
9 BSRNN-S + MGD ✗ 3.50 3.85 21.4 98.4 3.63 3.95 19.0 96.1

10 BSRNN-S + MRSD ✗ 3.53 3.89 21.4 98.4 3.68 3.98 19.2 96.3
11 CTS-Net [25] ✓ 2.94 3.42 18.0 96.7 3.02 3.47 15.6 92.7
12 GaGNet [5] ✓ 3.17 3.56 18.9 97.1 3.18 3.57 16.6 93.2
13 MDNet [26] ✓ 3.18 3.56 19.2 97.2 3.24 3.59 16.9 93.6
14 FRCRN [27] ✓ 3.23 3.60 19.8 97.7 − − − −
15 MTFAA-NET [12] ✓ 3.32 3.63 − − − − − −
16 BSRNN-16k ✓ 3.23 3.73 19.9 97.7 3.37 3.82 17.6 94.8
17 BSRNN ✓ 3.14 3.63 19.3 97.4 3.13 3.64 16.8 93.9
18 BSRNN-S ✓ 3.26 3.73 20.0 97.6 3.30 3.77 17.5 94.5
19 BSRNN-S + MGD ✓ 3.27 3.73 20.1 97.7 3.33 3.78 17.4 94.5
20 BSRNN-S + MRSD ✓ 3.32 3.77 20.5 97.8 3.37 3.80 17.9 94.7

Table 2. PDNSMOS P.835 scores on the DNS-2022 blind test
set, where SIG means speech quality, BAK means background
noise quality, and OVRL means overall quality.

ID Method
With Interference Without Interference

SIG BAK OVRL SIG BAK OVRL
1 Noisy 3.97 1.82 2.23 4.22 2.30 2.74
2 NSNet2 [28] 3.47 2.71 2.44 3.73 4.18 3.42
3 DeepFilterNet2 [29] 3.56 2.94 2.68 4.09 4.49 3.85
4 TEA-PSE [15] 3.69 3.64 3.16 4.16 4.44 3.89
5 TEA-PSE2 [16] 3.86 3.83 3.36 4.23 4.50 3.98

6 BSRNN-S 3.76 3.49 3.05 4.19 4.51 3.95
7 pBSRNN-S 3.66 3.91 3.21 4.17 4.50 3.94
8 + MRSD 3.90 3.81 3.37 4.30 4.50 4.04

Table 3. Results of subjective listening, objective word accu-
racy and final scores on the blind test set of DNS-2023.

Method
Headset Speakerphone

OVRL WACC SCORE OVRL WACC SCORE
Noisy 1.22 0.843 0.449 1.24 0.857 0.459

Baseline 2.34 0.687 0.511 2.38 0.727 0.537
pBSRNN-S + MRSD 2.65 0.724 0.568 2.66 0.724 0.570

v.s. 18); 3) The use of MGD and MRSD training objectives
can further improve the performance of the SE models. Models
trained using MRSD achieves the best SE performance; 4) The
best BSRNN model outperforms previous SE benchmark sys-
tems on both offline (ID 5 v.s. 10) and online (ID 15 v.s. 20)
scenarios and achieves the SOTA overall performance.

5.2. Personalized speech-enhancement

In Table 2, we present the PDNSMOS ablation results of
the proposed system on the DNS-2022 blind test set. It can
be observed that: 1) The non-personalized and personalized
BSRNN models show comparable performance when there is
no interfering speech, while the personalized model outper-

forms the non-personalized model for inputs without interfer-
ence speech; 2) The use of MDR discriminator loss will de-
grade the PDNSMOS score, one possible explanation is that the
MGD loss is particularly designed for the PESQ-WB metric,
which can be inconsistent with PDNSMOS; 3) After finetun-
ing with the MRSD discriminator loss, both models can achieve
better OVRL scores on the PDNSMOS metric; 4) The proposed
model can achieve comparable or better results against previous
SOTA PSE systems (ID 5 v.s. 10).

Table 3 shows the results of the proposed pBSRNN in
the DNS-2023 challenge. We found that: 1) The proposed
pBSRNN system obtains better performance against the base-
line systems from the challenge organizer. 2) While the pro-
posed pBSRNN system can significantly improve the subjec-
tive OVRL scores, its use can largely reduce speech recognition
word accuracy (WACC). This implies that current PSE mod-
els may introduce unexpected artifacts and excessively suppress
target speech when eliminating background noise and other in-
terfering speech.

6. Conclusion & Limitation
This paper presented the design of the BSRNN-based speech
enhancement and personalized speech enhancement models and
the corresponding training pipeline for full-band speech sig-
nals. With the modified band-level modeling strategy and the
use of MGD and MRSD training objectives, the proposed sys-
tems achieved competitive performance on various SE and PSE
benchmark datasets. However, as discussed in Section 6, the
use of the SE model will severely degrade the speech recogni-
tion performance, indicating that current SE and PSE models
still suffer from over-suppression and model distortion. In addi-
tion, we also find that when the timbres of the target speaker and
the interfering speaker are similar, the model may fail to remove
the interfering speech. Furthermore, if a channel mismatch oc-
curs between the enrollment speech and the target speech, the
model might mistakenly interpret them as distinct speakers.
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