INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

PronScribe: Highly Accurate Multimodal Phonemic Transcription From
Speech and Text

Yang Yu*, Matthew Perez'!, Ankur Bapna*, Fadi Haik*, Siamak Tazari*, Yu Zhang*

Google USA*, University of Michigan', Google Israel*

yangyuai@google.com, mkperez@umich.edu,

staz@google.com,

Abstract

We present PronScribe, a novel method for phonemic tran-
scription from speech and text input based on careful fine-
tuning and adaptation of a massive, multilingual, multimodal
speech-text pretrained model. We show that our model is ca-
pable of phonemically transcribing pronunciations of full utter-
ances with accurate word boundaries in a variety of languages
covering diverse phonological phenomena, achieving phoneme
error rates in the vicinity of 1-2% which is comparable to hu-
man transcribers.

We show that PronScribe can effectively learn this task
from relatively little training data, making it attractive even in
low-resource settings. It learns from text and speech simultane-
ously in a coherent way, and is better than previous models us-
ing speech, text or both. Additionally, the model’s good transfer
learning characteristics in multilingual settings can effectively
boost performance for lower-resourced languages.

1. Introduction

Phonemic transcriptions build the foundation of most text-
to-speech synthesis (TTS) and automatic speech recognition
(ASR) systems of today [1, 2]. TTS voices are typically built us-
ing phoneme level transcription and alignment of the recording
script, and a pronunciation layer is a necessary component of
the text normalization front-end of any controllable TTS system
[3, 4]. Similarly, despite trends toward E2E modeling, many
ASR systems rely on pronunciations to connect their acoustic
and language models, and for controllability and biasing.
Traditionally pronunciation lexicons are curated through
manual annotation which is both expensive and time-
consuming, often becoming a critical bottleneck for scaling
these systems to wider language bases. This is especially chal-
lenging for low-resource languages, which lack the data and/or
experts for labeling. Besides the lexicon, transcription of full
utterances presents additional challenges: resolution of homo-
graphs (which includes diacritics recovery in languages like
Arabic, Hebrew), reduced variant pronunciations (e.g. for func-
tion words), and sandhi effects where the pronunciation of a
word may be affected by its surroundings (e.g. liaison in French,
3rd tone sandhi in Mandarin, pitch accent in Japanese) are some
examples. The task is so nuanced that even human experts ex-
hibit a level of error in their transcriptions which we will ex-
amine in more depth later, as the transcription of phoneme se-
quences needs to encapsulate all detailed speech complexities
such as syllabification, stress, tone, pitch accent, etc. With
this in mind, having a neural model learned from unaligned,
speech and text samples to generate the proper phoneme se-
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quence would provide immense value in helping automate the
creation of pronunciation transcriptions and lexicons. Besides,
this neural model has further possible applications in alignment,
language learning, grapheme-to-phoneme (G2P) development.
In this work, we present PronScribe, a multi-modal model
framework for transcribing pronunciations from text and speech
by utilizing both inputs simultaneously in a coherent way, im-
proving significantly over baselines with different inputs:

* Speech-only (e.g. classic ASR/phoneme recognition [5])
¢ Text-only (e.g. classic TTS frontend such as Kestrel [4])
* Speech+Text (e.g. PronLearning [6])

We show phoneme and word error rates on a data set of rich
utterances (see Section 4) for a diverse set of languages, and
establish that its quality is close to human annotators, often cor-
recting mistakes in the “ground-truth” annotations. We demon-
strate the PronScribe model’s effectiveness at generating accu-
rate phoneme sequences including word and syllable bound-
aries, stress, tone, etc., while resolving the aforementioned is-
sues such as homographs, variants, and sandhi effects. Addi-
tionally, we show that small amount of training data can lead to
an acceptable baseline quality, and quickly improve thereafter,
developing a recipe for forecasting the model’s performance
based on the amount of available data, and showing the suitabil-
ity of our method in low-resource settings. Finally, we study the
transfer learning characteristics of the model with multiregional
and multilingual training showing favorable results.

2. Related Work

A previous pronunciation learning system [6] used a clas-
sic ASR acoustic model and a graph G2P FST as its language
model. This required the existence of a strong G2P and thus
was not suitable for low-resource languages. Its focus was on
learning pronunciations for single new words in a high-resource
language rather than transcribing entire utterances. We use this
model as a comparative baseline in our work.

Some pronunciation literature focuses on analysis for lan-
guage learning purposes [7, 8]. Although related, these applica-
tions are typically limited in scope by focusing on identifying a
limited set of phonemes. These models are tuned to detect nu-
anced mispronunciations rather than learn patterns to generate
accurate phoneme transcriptions at scale.

A closely related problem is grapheme-to-phoneme conver-
sion (G2P). G2P only uses text and is typically applied to sin-
gle words. It is richly studied in the literature, e.g. [9, 10, 11,
12, 13]. By utilizing audio in addition to the text, our model
can surpass the quality of traditional G2P models, can do so in
context, and can produce training data for obtaining better G2P
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models. Route et. al. [14] investigate a multimodal approach
for learning phonemic sequences utilizing both text and speech,
and show that multilingual training leads to large performance
improvements for low-resource languages. Route et. al. use the
audio signal as an auxiliary output by trying to recreate MFCCs
from text input with the final goal being a text-to-text G2P. This
is contrast to our work using the audio as an additional input
signal rather than an output.

The full-sentence text-to-phoneme transcription problem
without audio is in essence the TTS text normalization and pro-
nunciation problem. Modular rule- and lexicon-based systems
such as Kestrel [4] are still widely used which we utilize as an
additional comparative baseline for our work. Neural models
for text normalization (excluding pronunciation) [15, 16, 17]
and fully E2E text-to-phoneme models [18] generally could
achieve very high accuracy, if there is a preexisting text normal-
ization system or there are vast amounts of training data, which
are very difficult to obtain. We provide the first scalable way of
generating high-quality data for such models from speech-+text
sources, not relying on a preexisting working system.

3. Model

Our PronScribe framework consists of 2 stages: Pretraining a
massive multilingual, multimodal speech-text model; and care-
ful finetuning and adaptation to the pronunciation task.

3.1. Multilingual and Multimodal Pretraining

In the pretraining stage, we require a model that encodes both
speech and text and learns a joint representation of both modal-
ities. For our experiments, we used mSLAM [19] which
has demonstrated a strong ability to learn cross-lingual, cross-
modal representations of speech and text. It combines pretrain-
ing on over 800k hours of unlabeled speech data spanning over
51 languages, vast amounts of unlabeled text from 101 lan-
guages, as well as some paired speech with transcripts. Note
that the pretraining does not involve pronunciations in any form.

The separate encoders for text and speech are followed by
a multimodal encoder consisting of a deep stack of Conformer
layers [20]. There are multiple pretraining objectives ensuring
that in addition to learning each of the modalities individually,
the correlation and a joint representation between them are ef-
fectively learned using the comparatively smaller amounts of
paired speech and text data (see [19] for details). Ultimately,
it has been shown to be broadly successful on a diverse set
of downstream tasks including multilingual speech translation,
speech classification, speech recognition, and text classification,
making it a promising candidate for pronunciation transcription.

3.2. Pronunciation Finetuning

For finetuning shown in Fig. 1, the encoder side essentially
reuses and continues to finetune the encoders from mSLAM.
We removed self-supervision losses and the masking used in
pretraining. We always concatenate both encoded modalities
before feeding them into the Conformer layers of the multi-
modal encoder, as the task usually uses both inputs. An RNN-
T decoder [21] is added after the encoder, which is optimized
over a connectionist temporal classification (CTC) [22] loss
function. We also compared RNN-T to an attention-based de-
coder [23], and observed that while those decoders exhibit a
somewhat higher overall accuracy, they occasionally miss some
parts of the output causing problems for downstream tasks.
The final model is finetuned to the task of phoneme se-
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Figure 1: Model architecture of PronScribe finetuning

quence generation. Specifically, the output that we train on is
the phonemic transcription of the full utterance with word and
syllable boundaries including stress and tone as relevant (see
Table 3). There are a few additional important task-specific
adaptations:

¢ We used separate learning rates for encoders and decoders.

* We restricted the maximum length of the output phoneme se-
quence to 1024 so as to cover about 99% of the available data
while balancing model capacity, training efficiency, inference
speed, and final quality.

* We augmented the data with speech-only input.

The latter point about data augmentation was a particularly
crucial step for the success of the model. We initially observed
that the task of jointly learning from multiple modalities is still
very challenging during finetuning, and that the model was re-
lying mostly on the text as it is shorter and more discretized.
However, for the phonemic transcription task, we prefer the
model to regard the speech as the source of truth more so than
the text. We designed two data augmentation ways to help the
model utilize the speech signal more strongly. The first is to
mask some portion of the text for each input utterance. We call
this method masking. The other is to completely remove the
text for certain random utterances and feed them as additional
speech-only training examples besides the original examples
with paired input. We call this method mixing. As discussed
in Section 5.2, the mixing method produced better results, and
incidentally made the model also suitable for inference from
speech-only data.

4. Data Sets

We used 3 data sets in our work:
(A) LibriSpeech: Widely-used and openly available.
(B) Single Words: With associated audio and pronunciation
strings in English (proprietary).
(C) Rich Utterances: Recorded in studio conditions with text and
phonemic transcripts in multiple languages (proprietary).

LibriSpeech is noisy both in terms of audio quality and text
accuracy [24], and lacks phonemic transcriptions. To overcome
the latter, we used an internal version of Kestrel [4] (see Sec-
tion 2) to obtain reference pronunciations which are high qual-
ity and comparable to state-of-the-art methods (but not perfect).

Some statistics on the Rich Utterances set are available
in Table 2. The phonemic transcriptions in this set were par-
tially human-curated and are expected to match the audio very
closely; nevertheless, they are not truly golden. We observed
that finetuning only on set (C) gave us the best results and this
is assumed in all experiments below.
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Dataset Base PER Base WER PER WER
LibriSpeech 63 71.4 54 153
Single Words 7.1 145 0.7 22
Rich Utterances 24.9 42.6 1.9 4.9

Table 1: Comparison to the baseline [6].

Language pretraining finetune finetune PER | WER
speech (hrs) utt. speakers

en-US > 70,000 > 200K 25-30 1.9 49
fr-FR > 20, 000 > 100K 5-10 1.9 6.5
de-DE > 20, 000 > 40K 5-10 1.6 5.3

cmn-CN < 50 > 40K 5-10 1.8 5.8
he-IL 0 > 20K 5-10 0.8 4.5
ar-XA < 10 > 10K 5-10 1.9 10.4
am-ET 0 > 10K 4 22 11.5
fa-IR =~ 200 ~ 15K 1 2.3 10.9

Table 2: Results on the Rich Utterances set. Based on a sin-
gle pretrained 51-language mSLAM model with the amounts of
included speech hours indicated for the relevant ones.

5. Experiments and Results

We primarily use phoneme error rate (PER) and word error
rate (WER) as the two main metrics to evaluate and compare
performance. PER is defined as the Levenshtein distance be-
tween the reference phoneme sequence and the predicted one,
including syllable boundary and stress/tone symbols, compared
to the total number of phonemes. Since predicting word bound-
aries is part of our task, we can define WER in an analogous
way, where a word is considered wrong if any one symbol
(phoneme/stress/. . .) inside it is wrong.

5.1. Comparison to Baselines

Most directly comparable is the baseline introduced in [6]. Re-
call that it combines an off-the-shelf ASR AM and a G2P FST,
and has no trainable components of its own (see Sec. 2). Ta-
ble 1 shows significant improvements over this system on all
three US English data sets. Note that [6] was designed mainly
for single-word pronunciation learning, and we found that it of-
ten fails at predicting anything on long or noisy speech, e.g. as
found in LibriSpeech. In contrast, our model successfully tran-
scribes long utterances and is robust to noise; and significantly
improves over the baseline, even on single words.

Less comparable are text-only models, such as the latest
transformer-based G2P systems [10, 12], reporting WER well
over 20% on English single words versus our 2.2% WER; and a
full text-to-phonemes system such as Kestrel [4] with access to
a lexicon achieved 7% WER on the Rich Utterances set versus
our 4.9% in Table 1 — showing that PronScribe utilizes the added
speech effectively.

5.2. Effect of Multiple Modalities

We further studied the performance of the model when only
speech modality is presented (text input is empty). We observed
that the WER on LibriSpeech goes up to 16.8%, an absolute in-
crease of 1.5% (compared to Table 1 that uses both modalities),
which proves that the model using both modalities is better.

As mentioned in Section 3.2, we experimented with 2 meth-
ods for data augmentation in order to make the model follow the
speech more closely: masking and mixing. Without any of these
augmentations, the WER on LibriSpeech with speech-only in-
put was 56.4%. We experimented with augmentation ratios
from 10% to 80%, and found that 50% was the sweet spot. The

Text (EN) Take a deep breath as I read today’s mindfulness tip
Ref. "telk|@|...|"al |"NEd |t @."delz]...
Model "telk | @ |...|"al|"Mi:d |t @ . "delz]...
Why The model reflects the homograph pronunciation of “read”.
Text (EN) | Yank says what you doing johnny?

Ref. T{Nk]|...]"ju|"du:. @N|"dZA:. %ni:

Model "[{Nk|...|]@ |j@|"du:. @ N|"dZA:. %ni:

Why Speaker said “are y’ , “are” and reduced “you” are added.

Text (FR) Va prendre I’air.
Ref. va|pRA~dR|IER
Model va|pRA~.dR@ |1ER
Why The model resolves the correct sandhi effect on “prendre”.
Text (FA) 399 00l AL Olga il yuw S
Ref. d{4|s{.4Q:.s{4]dZ{.hQ:n]...
Model d{4|s{4.2Q:.s{.4e|dZ{.hQ:n]...

Why All vowels are recovered without diacritics in the input
including the vowel /e/ between the second and third word
which is added due to a grammatical sandhi effect. A minor
error is the introduction of the glottal stop /?/.

Table 3: A few examples show why the model is different from
reference. Transcriptions are in X-SAMPA notation.

best result with the masking technique delivered 26.6% WER,
whereas the best result with the mixing technique (i.e. adding
50% speech-only utterances to the training) achieved the 16.8%
reported above (and using speech+text at inference time deliv-
ers the 15.3% in Table 1).

5.3. Covering Diverse Phonological Phenomena

In Table 2, we examined the model on different languages with
diverse linguistic and phonological phenomena such as diacrit-
ics recovery (ar-XA, he-IL, fa-IR), stress (en-US, de-DE), tone
(cmn-CN), and sandhi (fr-FR, cmn-CN, fa-IR). We can see that
our model performs consistently well in all cases even when
very small amounts of data are available either during pretrain-
ing or finetuning.

5.4. Qualitative Analysis

As discussed in Section 4, the transcriptions of the Rich Utter-
ances are of high quality but not truly golden. They were cu-
rated in an iterative way using human annotators and automatic
tools and lexicons. To further understand the model’s frue ac-
curacy, we selected a set of utterances that were known to have
had human corrections applied on. We believe this set to contain
considerably fewer errors and to be closer to a true golden set.
We evaluated the system and obtained true PER 0.9% and WER
2.1% in en-US (cf. the 1.9% PER and 4.9% WER in Table 2).
Even there we observed numerous examples where PronScribe
improved over the human annotation.

While in other languages we did not have such a bespoke
corrections set, in our analysis of wins and losses we would
very often observe that the model was right and the reference
annotation was wrong. Some examples in English and other
languages are given in Table 3. Overall this leads us to believe
that across languages:

(i) The true PER and WER are likely better than in Table 2; and

(i) Humans make a comparable number of errors when facing
the daunting task of full phonemic transcription.

5.5. Low-Resource Training

We are interested in seeing the performance of PronScribe in
resource-restricted settings. We simulate low-resource training
by segmenting the training set of two high-resource languages

5543



(US English and German) into varying smaller sub-partitions.
The results are shown in Fig. 2. We observe that with 2000
training examples, a PER of < 5% can be achieved offering an
acceptable baseline. We observe a standard power-law relation-
ship between the performance and the amount of training data
(R*>0.996), which highlights PronScribe’s ability to perform
relatively well with limited amounts of training data available.
We then average the power-law functions of US English and
German to approximate a function that depicts the relationship
between PronScribe performance and available training data in
Figure 3. This forecast function is particularly useful for ap-
proximating performance given the amount of labeled data for
new languages. We find that the efficacy of this forecast func-
tion is highlighted by estimating similar error rates to most of
those shown in Table 2 for low- and high-resource languages.

5.6. Significance of Pretraining

Our model effectively learns from large amounts of unpaired
speech and text data and some paired data during pretrain-
ing and forms inherent unnamed representations for all phones
(cf.[25]). The finetuning essentially teaches the model to map
those phone representations to specific phoneme symbols of the
language. Therefore, without pretraining, it would likely be
more difficult for the model to efficiently learn this mapping.
We confirmed this with experiments in several different lan-
guages: Compared to the results on Arabic and Persian (10.4%
and 10.9% WER) in Table 2, without pretraining, it can only
achieve 12.3% and 33.6%, respectively.

5.7. Multilingual and Multiregional Transfer Learning

To understand the transfer learning characteristics of our model,
we first started investigating its ability to leverage different re-
gional data from the same language. We selected several re-
gional English data (i.e. American, British, Australian, Indian,
Nigerian, Singaporean), and compared the monolingual perfor-
mance with 2 multi-region versions: One with and one without
lang-id. In experiments with lang-id, we prepend the text input
with two tokens indicating language and region.

The results are shown in Fig. 4. We observed performance
improvements across all English regions for multi-region mod-
els with lang-id, and significant improvements for low-resource
languages such as en-NG and en-SG. Even for en-US, we found
that multilingual training improved performance over the mono-
lingual baseline. This suggests that PronScribe can effectively
leverage data from multiple different regions to improve perfor-
mance, and provides a practical alternative to simply collecting
more data for a single language.

PER / WER vs. # training samples using en/us and de/de
@® EnPER @ EnWER

DePER @ DeWER

100
# of samples (thousands)

150

Figure 2: Resource-restricted training for en-US and de-DE.
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Figure 3: Forecast performance trend for training PronScribe.
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Figure 4: WER of multi-region training on different EN locales.

Although explicitly providing lang-id delivered consis-
tently better results, an interesting finding is that contrary to
G2P experiments [11], in most cases, multilingual training
without lang-id still improves performance over the monolin-
gual baseline. This suggests that the speech input allows the
model to infer similar characteristics to an explicitly defined
lang-id which ultimately facilitates multilingual training.

An experiment with Romance languages, including Span-
ish, French, French Canadian, Italian, and Romanian indicated
similar results where particularly the lower-resourced regions
benefited significantly. However, Romanian improved only
slightly suggesting that the closeness of the languages matters.

6. Conclusion

We presented PronScribe, a novel method for phonemic tran-
scription from speech and text input based on careful fine-
tuning and adaptation of a massive, multimodal, multilingual
pretrained model. We showed that our model is capable of
phonemically transcribing full utterances in a variety of lan-
guages covering diverse phonological phenomena, significantly
improving over previous methods, whether they used only text,
only speech, or both. We argue that the accuracy we achieve
is reasonably close to human transcribers, and that it presents
a scalable way for generating large amounts of data for text-to-
phoneme models.

Furthermore, we studied the model and its properties in
depth, developing a recipe for predicting the accuracy of the
model based on the available amount of training data, and par-
ticularly showing its suitability in low-resource settings. Fi-
nally, we observed good transfer learning capabilities, and that
lower-resourced regions benefit significantly from joint training
with higher-resourced ones. With the system, we have gener-
ated over 3 million high quality text-to-phoneme data samples
in multiple languages.
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