
Speaker Diarization for ASR Output with T-vectors:
A Sequence Classification Approach

Midia Yousefi, Naoyuki Kanda, Dongmei Wang, Zhuo Chen, Xiaofei Wang, Takuya Yoshioka

Microsoft, One Microsoft Way, Redmond, WA, USA
{midiayousefi, nakanda, dowan, zhuc, xiaofewa, tayoshio}@microsoft.com

Abstract
This paper considers applying speaker diarization (SD) to the
output tokens of automatic speech recognition (ASR). We for-
mulate the task to be solved as a sequence classification prob-
lem, where we estimate the correct speaker label for each ASR
output token based on a sequence of token-level speaker em-
beddings and candidate speaker profiles. To leverage the infor-
mation from the ASR model, we utilize a recently proposed t-
vector for the speaker embedding estimation. Whereas previous
studies performed t-vector classification using cosine similari-
ties with ad hoc post-processing, we propose to use a sequence
classification model to leverage the sequential nature of the task
more effectively. To handle a variable number of speakers, we
use a classification model inspired by a target speaker voice ac-
tivity detection based on transformers. We conduct experiments
using the AMI meeting corpus in both speaker identification and
diarization settings and show the effectiveness of our approach.
Index Terms: speaker diarization, multi-talker speech recogni-
tion, serialized output training, speaker embedding

1. Introduction
The increasing popularity of podcasts and online videos as well
as the widespread use of meeting recordings resulted in a surge
of the demand for automatic speech recognition (ASR) of con-
versation recordings [1, 2, 3]. Speaker diarization (SD) [4], a
technology to label audio recordings with classes that corre-
spond to speaker identity, is one of the indispensable compo-
nents for such conversation transcription systems. SD provides
greater readability and also helps subsequent natural language
processing. The speaker identity can be represented by either a
real name or an anonymous ID.

In an exemplary architecture of a conversation transcrip-
tion system, SD is first applied, and ASR is then performed for
each speech segment detected by SD [5, 6]. With the advance-
ment of the SD technology [7, 8], this approach demonstrated a
great capability to deal with challenging conversations contain-
ing many overlapped speech segments [2]. However, previous
studies [9, 10, 11, 12] showed that the SD accuracy could be
greatly improved by incorporating information from ASR, such
as word time boundaries and linguistic features.

With the ASR technology improvement in handling long-
term contexts and overlapped speech, it has become increas-
ingly common to apply ASR directly to multi-talker audio
[13, 14, 15, 16]. When ASR is performed independent of SD,
each ASR output token must be labeled by speaker identity af-
terwards. This could be accomplished by aligning the ASR and
SD outputs based on estimated word and speaker-segment time
stamps. However, aligning the ASR and SD results can be chal-
lenging, as they handle overlaps of multiple talkers’ utterances

differently.
One solution to this challenge is to estimate a speaker

embedding vector for each ASR output token, or a set of
consecutive ASR output tokens, and classify them by speak-
ers1 [17, 18, 19]. A naı̈ve way of estimating speaker embed-
ding vectors based on word time stamps could be insufficient
for dealing with overlapped speech. Recently, Kanda et al. [19]
proposed a speaker embedding vector, called a t-vector, utiliz-
ing transformer transducer (TT) ASR models [20]. The t-vector
is estimated for each ASR token by leveraging the interme-
diate representations obtained from the ASR encoder and the
recognized tokens. The t-vector model can also be applied to
multi-talker ASR models obtained with token-level serialized
output training (t-SOT). In [19], the t-vectors were classified
into speakers by measuring them against a set of speaker d-
vectors (speaker profiles) by cosine similarity. However, some
ad hoc post-processing was necessary to smooth out disconti-
nuities in the speaker label assignments.

In this paper, we investigate the use of a sequence classi-
fication model that can take an entire t-vector sequence as in-
put and eliminate the need for a separate post-processing step.
Since the number of speakers can vary for each audio sequence,
a fixed number of output dimensions cannot be assumed. There-
fore, we utilize a model inspired by the recently proposed trans-
former model [21] for target speaker voice activity detection
(TS-VAD) [8]. In contrast to the previous t-vector work, which
performed evaluation only on simulated data sets [19], we con-
duct experiments using actual meeting recordings from the AMI
corpus [22] and show the effectiveness of our proposed se-
quence classification model. It is worth noting that extending
the t-vector approach to real meeting data poses a challenge due
to the lack of sufficient transcribed training data with speaker
annotations. In our experiments, we alleviated this by adopting
a pseudo-labeling technique to pre-train the t-vector model with
data containing only speaker labels. The pre-trained model was
then fine-tuned using a limited amount of real transcribed data.

2. Speaker diarization for ASR output
We start by framing the problem we wish to solve using a gen-
eral term. We consider an ASR system that generates a se-
quence of tokens (r1, · · · , rU ) from an audio input, where the
tokens can be subwords or words. Each token ru has an as-
sociated F -dimensional embedding, eu ∈ RF , that contains
information for identifying the speaker of that token. Addi-
tionally, we assume that we have a set of speaker profiles,
P = {ps}s∈{1,··· ,S}, where S is the number of potential speak-
ers, and ps ∈ RP is a P -dimensional embedding representing

1Note that this approach simplifies the SD task from frame-based
multi-label classification to a token-based single-label problem.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

3502 10.21437/Interspeech.2023-494



the sth potential speaker. The speaker profiles can be obtained
from users (speaker identification scenario) or estimated using
an independent frame-based diarization method (SD scenario).
Our task is to classify each token-level embedding eu, associ-
ated with the ASR output token ru, into their respective speaker
index s, given the speaker profile set P.

In this paper, we use multi-talker TT ASR models based
on t-SOT [16] with token-level speaker embeddings called t-
vectors [19]. While the proposed framework is applicable to
other models,2 we chose these methods as they produced state-
of-the-art benchmarking results for the LibriSpeechMix [15]
and LibriCSS [25] corpora. These models are briefly reviewed
below.

2.1. T-SOT: multi-talker TT ASR

T-SOT attempts to handle overlapping talkers with TT ASR
models [16]. Assume we have an audio recording with multiple
active speakers. A t-SOT ASR model generates tokens of tran-
scriptions for all speakers as a single sequence, where all the
tokens are sorted chronologically using their vocalized times.
To deal with overlapping speech, t-SOT introduces an idea of
virtual output channels: each virtual output channel must con-
tain non-overlapping tokens while the tokens in different chan-
nels may overlap. The t-SOT ASR model inserts a special token
between two adjacent output tokens spoken by different speak-
ers to indicate a change of the virtual output channels. If we
assume that a maximum of two talkers can speak at the same
time, we need only two virtual output channels and hence one
such special symbol, which we denote as ⟨cc⟩ following [16].

During training, for each training sample, we align the au-
dio with the reference transcription, sort the tokens of all speak-
ers chronologically, and insert ⟨cc⟩ between the adjacent tokens
spoken by different speakers. At inference time, the TT ASR
model generates a sequence of tokens including ⟨cc⟩ and thus
can handle overlapping utterances. We refer the reader to [16]
for more details.

2.2. T-vector: speaker embedding for TT ASR

T-vector [19] is a speaker embedding designed for use with a TT
ASR model. It involves incorporating an additional neural net-
work, which we refer to as a t-vector model, into a pre-trained
ASR model. By utilizing the connections from the ASR model
layers, the t-vector model can leverage both acoustic and lexical
information to improve speaker classification.

The t-vector model comprises a speaker encoder and a
speaker decoder. The speaker encoder processes audio input in
tandem with the ASR encoder on a frame-by-frame basis, and
consists of a Res2Net module [26, 27] followed by a stack of
multi-head attention (MHA) layers. The Res2Net module has
the same architecture with that of the d-vector model used for
speaker profile extraction. The number of MHA layers in the
speaker encoder is the same as that of the ASR encoder. Each
MHA layer of the speaker encoder uses the key and query in-
puts from the corresponding MHA layer of the ASR encoder.
The speaker decoder consists of two bidirectional long short-
term memory (BLSTM) layers, and generates a t-vector for each

2For instance, a potentially less powerful, yet simpler, approach
would be to employ a standard ASR module that generates a time-
stamped word sequence. Meanwhile, we execute a speaker embedding
extraction model on the input audio to acquire frame-level speaker em-
bedding vectors, such as d-vectors or x-vectors [23, 24]. Next, for ev-
ery word produced by the ASR model, we would compute the average
speaker embedding for the duration of time that the word occupies.

Figure 1: Sequence classification model for t-vectors.

token based on the speaker encoder output and ASR output to-
kens.

The t-vector model is trained using a speaker identification
cross entropy loss. During training, the cosine similarities be-
tween the t-vector and candidate speaker profiles are calculated
and used to compute the following loss function:

L =
∑

u|ru ̸=⟨cc⟩

−log
ecos(eu,psu )

ecos(eu,psu ) +
∑

s ̸=su
ecos(eu,ps) . (1)

Here, eu is the t-vector for the u-th token, su is the index of
the correct speaker for token ru. For each training sample, the
speaker profile set P is obtained by randomly picking S enroll-
ment audio files from the entire training set and extracting d-
vectors by using a pre-trained Res2Net-based model [26, 27].

2.3. Speaker diarization with t-vector classification

During inference, once we obtain ASR output tokens (ru) and
associated t-vector sequence (eu), we classify each t-vector, eu,
to the correct speaker of the corresponding ASR output token
ru. The speaker label is defined as an index of the speaker
profile set P. In [19], speaker classification was performed for
each embedding independently by calculating the cosine simi-
larity between eu and each speaker profile ps and choosing the
speaker with the maximum cosine similarity.

However, the previously adopted token-by-token classifi-
cation approach may not be optimal for taking into account
the statistical dependency that exists between neighboring t-
vectors. Such statistical dependency results from the fact that
consecutive ASR tokens are likely to be spoken by the same per-
son. Therefore, it could be beneficial to adopt a sequence classi-
fication approach to leverage the inter-t-vector dependency. Ad-
ditionally, such an approach would pave the way for modeling
the turn-taking dynamics between multiple talkers, although we
leave the analysis of this aspect for future work.

3. Sequence classification of t-vectors
Our goal is to develop a sequence classification model that can
classify a sequence of t-vectors based on a set of candidate
speaker profiles. Since the candidate speaker profiles are dif-
ferent for each test audio (i.e., each meeting), we cannot use
a sequence classification model with a fixed number of output

3503



Table 1: Comparison of token-by-token t-vector classification
using cosine similarity and proposed sequence classification in
terms of speaker classification error rate (SCErr) and cpWER
on LibriSpeech-based simulated data.

Model SCErr (%) cpWER (%)

Token-by-token classification 1.5 11.9
Sequence classification 0.9 11.2

dimensions. To address this, we employ a classification model
that is inspired by a transformer-based TS-VAD model [21], as
described below. The proposed model is also depicted in Fig. 1.

Suppose we have the t-vector sequence (e1 · · · eU ) and the
candidate speaker profile set P = {ps}s∈{1,··· ,S} as defined
in Section 2. We formulate our goal to estimate 2D tensor
Q ∈ RS×U whose value at position (s, u) provides the pos-
terior probability of the uth token, ru, being spoken by the sth
speaker. This is achieved by using the model described below.

First, we transform the t-vector sequence and the candidate
speaker profile set into a 3D tensor I ∈ RS×U×(F+P ), which
we call a composite input tensor. The 1D slice of I at position
(s, u) of the first two dimensions, i.e., I[s, u, :] with a slice nota-
tion, is the concatenation of the uth t-vector and the sth profile,
namely eu and ps, respectively. We preprocess the composite
input tensor I by applying a BLSTM to the t-vector sequence
dimension, i.e., the second dimension indexed by u, to obtain
another 3D tensor O0, which forms an input to the subsequent
dual-path blocks. That is, we have

O0 = [f rnn
0 (I[s, :, :])]s=1,··· ,S , (2)

where f rnn
0 denotes the sequence mapping defined by the

BLSTM. The ith dual-path block transforms Oi−1 to another
3D tensor Oi by first applying a BLSTM to the t-vector se-
quence dimension and then a transformer encoder to the speaker
dimension as follows:

Õi =[f rnn
i (Oi−1[s, :, :])]s=1,··· ,S (3)

Oi =[fmha
i (Õi[:, u, :])]u=1,··· ,U , (4)

where f rnn
i and fmha

i denotes the sequence mappings defined by
the BLSTM and the transformer encoder, respectively. Note
that the BLSTM is applied to the second dimension indexed
by u in Eq. (3), whereas the transformer encoder is applied
to the first dimension indexed by s in Eq. (4). After applying
B dual-path blocks, we linearly project each vector in the last
dimension to a scalar to generate logits, i.e.,

Q̃ =[f lin(OB [s, u, :])](s,u)=(1,1),··· ,(S,U). (5)

Finally, we obtain the desired posterior probability tensor by
applying softmax function to the speaker dimension. That is,

Q =f softmax(Q̃). (6)

The parameters involved in this model are optimized with
the same cross entropy loss as Eq. (1). More specifically,
cos(eu, ps) in Eq. (1) is replaced by the (s, u) element of Q̃.

4. Experiments
Section 4.1 reports a proof-of-concept experimental result ob-
tained using simulated data. Section 4.2 describes our results
on real meeting recordings. For both experiments, we used the
same d-vector model based on Res2Net [26] for speaker profile
generation. We employed the VoxCeleb corpora [28, 29] for the
d-vector model training, following the recipe of [27].

Table 2: cpWER (%) results for ASR + SID evaluation set-
ting. Speaker-Agnostic WERs were 16.3%, 18.9%, 21.6%, and
25.3% for IHM-mix-dev, IHM-mix-eval, SDM-dev, and SDM-
eval, respectively. Utterance-group segmentations were used.
The number of parameters of t-SOT TT ASR model was 82M.

t-vector model Classification IHM-mix SDM

model dev eval dev eval

28M token-by-token 27.6 26.5 32.2 32.3
32M token-by-token 27.4 26.5 33.1 32.5
28M seq-cls (4M) 25.1 24.9 30.3 31.0

4.1. Experiment with simulated data

Data: We used the LibriSpeech [30] corpus to simulate conver-
sations. The training data were simulated by randomly select-
ing at most five utterances from the train-960 subset and mixing
them with random delays without amplitude rescaling. Ran-
domly generated room impulse responses were applied to the
individual utterances. Also, a randomly chosen noise sample
was added to the mixed signal at a random signal-to-noise ra-
tio. The d-vector of each speaker in the mixture was created by
averaging d-vectors extracted from five randomly picked utter-
ances of the same speaker. The evaluation data were generated
in the same way based on the dev-clean subset.
Model configuration and training: We trained all models,
namely the ASR model, the t-vector extraction model, and the
t-vector sequence classification model, on the LibriSpeech mix-
ture data described above. Our ASR model was based on a
t-SOT TT with an 18-layer transformer encoder, and built by
using the configuration and recipe described in [16]. We em-
ployed the same configuration as [19] for the t-vector model ex-
cept that we used a non-causal Res2Net in the speaker encoder
and a 2-layer BLSTM with 512 cells in each direction for the
speaker decoder. Finally, our t-vector sequence classification
model comprised 2 dual-path blocks using the following con-
figurations: f rnn

0 with a 2-layer BLSTM with 128 cells in each
direction, f rnn

i with a single layer BLSTM including 160 cells in
each direction, and fmha

i with a transformer encoder layer with
320-dim MHA with 4 attention heads followed by a 320-dim
position-wise feed-forward layer, for i > 0. The t-SOT TT
ASR model and the t-vector extraction model were first trained
by following the training configuration in [19]. The t-vector se-
quence classification model was then trained by freezing the pa-
rameters of t-SOT TT ASR and t-vector models. We employed
an AdamW optimizer with a linear decay learning rate schedule
with a peak learning rate of 1.5e-4 after 10k warm-up iterations.
The training was performed for 60k iterations with 16 GPUs,
each of which consumed a mini-batchd of 12k frames.
Results: Table 1 shows the speaker classification error rate
(SCErr) and concatenated minimum-permutation word error
rate (cpWER) [2] results. The SCErr was obtained by using
ground-truth ASR tokens and was defined as the percentage
of the incorrectly speaker-identified tokens. This allows us to
prevent both t-vector estimation and performance measurement
from being affected by ASR errors. Our proposed model im-
proved the SCErr by 40% relative, which demonstrates its ef-
fectiveness under the oracle ASR condition. When using esti-
mated ASR tokens, the cpWER was improved by 5.9% relative,
from 11.9% to 11.2%.

4.2. Experiment with real meeting recordings

We further conducted experiments using the AMI corpus [22]
to evaluate the proposed model in more realistic settings. We

3504



Table 3: cpWER (%) results for ASR + SD evaluation setting.
28M-parameter model was used for t-vector computation.

Classification model Segmentation IHM-mix SDM

dev eval dev eval

token-by-token utt-grp 26.9 28.1 31.3 33.5
vad 26.1 27.3 31.0 33.8

seq-cls model utt-grp 24.8 26.0 29.9 32.0
vad 23.9 24.9 29.5 31.9

considered two recording conditions: one using single distant
microphone recordings (SDM), and one using mixtures of inde-
pendent headset microphone recordings (IHM-mix).

4.2.1. Two-stage training

Since the quantity of the AMI training set is only about 80
audio hours, we adopted a two-stage training approach. For
ASR, we pre-trained a t-SOT TT model on a 75k-hours of in-
house speech dataset comprising 64 million anonymized, tran-
scribed English utterances collected from various domains such
as voice search and dictation [31]. When creating a mini-batch,
we used a mixture of randomly picked two utterances instead of
an original utterance at a 0.5 probability. The pre-trained model
was then fine-tuned on the AMI training set. We adopted the
model configuration and training recipe of [16] and thus used
an 18-layer TT, in which each transformer layer consisted of a
512-dim MHA with 8 heads and a 2048-dim point-wise feed-
forward layer. The ASR decoder was a prediction network with
2 layers of 1024-dim LSTM. The input to the ASR model was
80-dim log mel-filterbank (LMFB) extracted every 10 msec.

We used the VoxCeleb corpora [28, 29] to train a t-vector
extraction model. Because the VoxCeleb corpora provides only
speaker labels, we used our in-house ASR model to generate
pseudo transcriptions for the training utterances. Based on the
VoxCeleb utterances, we generated multi-talker training sam-
ples with additional random noise and reverberation in the same
way as Section 4.1. With the ground-truth speaker labels and
pseudo transcriptions, we pre-trained the t-vector model for 60k
iterations on 16 GPUs using 12k-frame mini-batches. The pre-
trained t-vector model was fine-tuned on the AMI SDM and
IHM-mix training set for another 500 iterations. The t-vector
model consisted of a speaker encoder and decoder. The first
block in the speaker encoder was a Res2Net model followed by
18 layers of 128-dim, 8-head MHA to extract raw speaker repre-
sentations. The speaker decoder was a 2-layer BLSTM network
with 512 cells in each direction. The input to the t-vcetor model
was 80-dim LMFB. Note that the ASR model parameters were
frozen during the training so that the use of the pseudo tran-
scriptions would have no negative impact on the ASR accuracy.

Finally, the t-vector sequence classification model was also
pre-trained on VoxCeleb-based simulated data for 60k iterations
on 16 GPUs using 12k-frame mini-batches. The pre-trained
model was then fine-tuned on the SDM and IHM-mix audio data
of the AMI training set for another 500 updates. We used the
same model configuration as the one used in Section 4.1. When
we trained the t-vector sequence classification model, both the
ASR and t-vector extraction model paramters were fixed.

4.2.2. Results for ASR + SID setting

First, we performed evaluation by using an SID setting. In this
experiment, for each speaker of each test meeting, we obtained
isolated audio signals of the speaker from the corresponding
IHM audio channel of the other meetings involving the speaker.

This ensured the number of profiles to be the same as the num-
ber of attending speakers while it created an acoustic condition
mismatch between the speaker profiles and the SDM test set.
We used the utterance-group segmentations as described in [32]
and measured the performance with cpWER.

Table 2 compares the cpWERs of the proposed sequence
classification (seq-cls) model and the cosine-similarity-based
(token-by-token) method. For the latter, we also experimented
with a slightly larger t-vector model for a fair comparison with
our sequence classification model in terms of the total model
size. This t-vector model had a speaker decoder consisting of
a 2-layer BLSTM with 615 cells in each direction while the
original t-vector model had 512 cells in each direction. We can
see that performing sequence classification on the t-vectors re-
duced the cpWER by 6.0 % and 4.0% relative for the IHM-
mix-eval and SDM-eval sets, respectively. It is also notewor-
thy that further increasing the t-vector model capacity produced
no cpWER gains with the cosine-similarity-based classification
method. This indicates that the performance improvement pro-
vided by the proposed model can be attributed to the sequence
modeling architecture rather than the increased model size.

4.2.3. Results for ASR + SD setting

We also evaluated the proposed model in a SD setting by es-
timating the speaker profiles directly from each test meeting.
This was achieved by using a clustering-based SD method and
calculating an average d-vector for each detected speaker from
the meeting audio. Specifically, we divided each session into
short segments based on the WebRTC Voice Activity Detection
(VAD) system [33]. Then, we extracted a 128-dim d-vector for
every 0.75 second with a window of 1.5 seconds. Based on the
obtained d-vectors, we estimated the number of speakers in the
meeting audio with the normalized maximum eigengap method
[34]. With the estimated number of speakers, we applied spec-
tral clustering for SD.

In addition to the utterance-group (utt-grp) segmentation
used in the previous experiment in Sec. 4.2.2, we used auto-
matically generated segments. For this, we applied WebRTC
VAD to generate segments of duration 20–40 seconds.

Table 3 shows the experimental results. As with the SID
evaluation setting, our proposed t-vector sequence classification
model outperformed the cosine-similarity-based classification
method for both segmentation schemes. With the VAD-based
segmentations, the proposed model achieved relative cpWER
improvements of 8.8 % and 5.6 % for IHM-mix-eval and SDM-
eval, respectively. It is worth noting that using the VAD-based
segmentations consistently resulted in lower cpWERs when the
proposed model was used for the t-vector classification. Con-
sidering that VAD tended to produce longer segments than the
utterance-group segments which had an average duration of 4
seconds, this may be an indication that the proposed model
leveraged the longer contexts more efficiently.

5. Conclusion
We addressed the problem of speaker diarization for ASR out-
put tokens. By using a t-vector, which is a token-level speaker
representation, we described a sequence classification model
that determines speaker labels for the t-vectors utilizing the en-
tire t-vector sequence and a set of speaker profiles as input. Ex-
perimental results using the AMI meeting corpus showed cp-
WER improvements in both the SID and SD settings, compared
with token-by-token classification using cosine similarities .

3505



6. References
[1] T. Yoshioka, I. Abramovski, C. Aksoylar et al., “Advances in on-

line audio-visual meeting transcription,” Proc. ASRU, pp. 276–
283, 2019.

[2] S. Watanabe, M. Mandel, J. Barker et al., “CHiME-6 chal-
lenge: Tackling multispeaker speech recognition for unsegmented
recordings,” CHiME 2020-6th International Workshop on Speech
Processing in Everyday Environments, 2020.

[3] F. Yu, S. Zhang, Y. Fu et al., “M2met: The icassp 2022
multi-channel multi-party meeting transcription challenge,” Proc.
ICASSP, pp. 6167–6171, 2022.

[4] T. J. Park, N. Kanda, D. Dimitriadis et al., “A review of speaker di-
arization: Recent advances with deep learning,” Computer Speech
& Language, vol. 72, p. 101317, 2022.

[5] I. Medennikov, M. Korenevsky et al., “The STC system for the
CHiME-6 challenge,” CHiME 2020 Workshop on Speech Process-
ing in Everyday Environments, 2020.

[6] D. Raj, P. Denisov, Z. Chen et al., “Integration of speech separa-
tion, diarization, and recognition for multi-speaker meetings: Sys-
tem description, comparison, and analysis,” Proc. SLT, pp. 897–
904, 2021.

[7] Y. Fujita, N. Kanda, S. Horiguchi et al., “End-to-end neural
speaker diarization with permutation-free objectives,” Proc. In-
terspeech, pp. 4300–4304, 2019.

[8] I. Medennikov, M. Korenevsky, T. Prisyach et al., “Target-speaker
voice activity detection: A novel approach for multi-speaker di-
arization in a dinner party scenario,” Proc. Interspeech, pp. 274–
278, 2020.

[9] J. Huang, E. Marcheret, K. Visweswariah, and G. Potamianos,
“The IBM RT07 evaluation systems for speaker diarization on
lecture meetings,” Multimodal Technologies for Perception of Hu-
mans, pp. 497–508, 2007.

[10] A. Khare, E. Han, Y. Yang et al., “ASR-aware end-to-end neural
diarization,” Proc. ICASSP, pp. 8092–8096, 2022.

[11] N. Kanda, X. Xiao, Y. Gaur et al., “Transcribe-to-diarize: Neu-
ral speaker diarization for unlimited number of speakers using
end-to-end speaker-attributed asr,” Proc. ICASSP, pp. 8082–8086,
2022.

[12] W. Xia, H. Lu, Q. Wang et al., “Turn-to-diarize: Online speaker
diarization constrained by transformer transducer speaker turn de-
tection,” Proc. ICASSP, pp. 8077–8081, 2022.

[13] X. Chang, W. Zhang, Y. Qian et al., “MIMO-SPEECH: End-to-
end multi-channel multi-speaker speech recognition,” ASRU, pp.
237–244, 2019.

[14] A. Tripathi, H. Lu, and H. Sak, “End-to-end multi-talker overlap-
ping speech recognition,” Proc. ICASSP, pp. 6129–6133, 2020.

[15] N. Kanda, Y. Gaur, X. Wang et al., “Serialized output training for
end-to-end overlapped speech recognition,” Proc. Interspeech, pp.
2797–2801, 2020.

[16] N. Kanda, J. Wu, Y. Wu et al., “Streaming multi-talker ASR
with token-level serialized output training,” Proc. Interspeech, pp.
3774–3778, 2022.

[17] D. Dimitriadis and P. Fousek, “Developing on-line speaker di-
arization system,” Proc. Interspeech, pp. 2739–2743, 2017.

[18] N. Kanda, Y. Gaur, X. Wang et al., “Joint speaker counting,
speech recognition, and speaker identification for overlapped
speech of any number of speakers,” Proc. Interspeech, pp. 36–40,
2020.

[19] N. Kanda, J. Wu, Y. Wu et al., “Streaming speaker-attributed
ASR with token-level speaker embeddings,” Proc. Interspeech,
pp. 521–525, 2022.

[20] Q. Zhang, H. Lu, H. Sak et al., “Transformer transducer: A
streamable speech recognition model with transformer encoders
and rnn-t loss,” Proc. ICASSP, pp. 7829–7833, 2020.

[21] D. Wang, X. Xiao, N. Kanda et al., “Target speaker voice activ-
ity detection with transformers and its integration with end-to-end
neural diarization,” arXiv preprint arXiv:2208.13085, 2022.

[22] J. Carletta, S. Ashby, S. Bourban et al., “The AMI meeting cor-
pus: A pre-announcement,” Machine Learning for Multimodal
Interaction: Second International Workshop, MLMI 2005, Ed-
inburgh, UK, July 11-13, 2005, Revised Selected Papers 2, pp.
28–39, 2006.

[23] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-
Dominguez, “Deep neural networks for small footprint text-
dependent speaker verification,” Proc. ICASSP, pp. 4052–4056,
2014.

[24] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
Proc. ICASSP, pp. 5329–5333, 2018.

[25] Z. Chen, T. Yoshioka, L. Lu et al., “Continuous speech separation:
Dataset and analysis,” Proc. ICASSP, pp. 7284–7288, 2020.

[26] S.-H. Gao, M.-M. Cheng, K. Zhao et al., “Res2Net: A new multi-
scale backbone architecture,” IEEE transactions on pattern anal-
ysis and machine intelligence, vol. 43, no. 2, pp. 652–662, 2019.

[27] X. Xiao, N. Kanda, Z. Chen et al., “Microsoft speaker diariza-
tion system for the voxceleb speaker recognition challenge 2020,”
Proc. ICASSP, pp. 5824–5828, 2021.

[28] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: a large-
scale speaker identification dataset,” Telephony, vol. 3, pp. 33–
039, 2017.

[29] J. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep
speaker recognition,” Proc. Interspeech, 2018.

[30] V. Panayotov, G. Chen, D. Povey et al., “LibriSpeech: an asr
corpus based on public domain audio books,” Proc. ICASSP, pp.
5206–5210, 2015.

[31] N. Kanda, G. Ye, Y. Wu, Y. Gaur, X. Wang, Z. Meng, Z. Chen,
and T. Yoshioka, “Large-Scale Pre-Training of End-to-End Multi-
Talker ASR for Meeting Transcription with Single Distant Micro-
phone,” in Proc. Interspeech 2021, 2021, pp. 3430–3434.

[32] N. Kanda, G. Ye, Y. Wu et al., “Large-scale pre-training of end-to-
end multi-talker ASR for meeting transcription with single distant
microphone,” Proc. Interspeech, pp. 3430–3434, 2021.

[33] “py-webrtcvad,” https://github.com/wiseman/py-webrtcvad, ac-
cessed: 03-05-2023.

[34] T. J. Park, K. J. Han, M. Kumar et al., “Auto-tuning spectral clus-
tering for speaker diarization using normalized maximum eigen-
gap,” IEEE Signal Processing Letters, vol. 27, pp. 381–385, 2019.

3506


