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Abstract
To simplify the generation process, several text-to-speech (TTS)
systems implicitly learn intermediate latent representations in-
stead of relying on predefined features (e.g., mel-spectrogram).
However, their generation quality is unsatisfactory as these rep-
resentations lack speech variances. In this paper, we improve
TTS performance by adding prosody embeddings to the latent
representations. During training, we extract reference prosody
embeddings from mel-spectrograms, and during inference, we
estimate these embeddings from text using generative adversar-
ial networks (GANs). Using GANs, we reliably estimate the
prosody embeddings in a fast way, which have complex distri-
butions due to the dynamic nature of speech. We also show that
the prosody embeddings work as efficient features for learning
a robust alignment between text and acoustic features. Our pro-
posed model surpasses several publicly available models with
less parameters and computational complexity in comparative
experiments.
Index Terms Text-to-speech, single-stage, generative adversar-
ial networks, feature estimation, alignment

1. Introduction
The advancement of neural networks has led to significant qual-
ity improvement in text-to-speech (TTS) systems. Depending
on the structural differences when converting text into interme-
diate features (e.g., mel-spectrogram), neural TTS models can
be classified as either autoregressive (AR) or non-autoregressive
(non-AR). AR-based methods [1–3] successfully generate high-
quality speech but have low inference speed because they can-
not be implemented in a parallel manner. To solve this problem,
various types of non-AR TTS models have been proposed [4–7].

Recently, non-AR TTS models have been extended to a
single-stage end-to-end structure that incorporates a generative
model-based vocoder into the training process [5] (FastSpeech
2s), [8, 9]. These models train entire text-to-waveform conver-
sion chains under a unified framework. Thus, they can utilize a
latent representation that is trained to implicitly contain acous-
tic information instead of being constrained to predefined in-
termediate features such as the mel-spectrogram. However, the
synthesized speech quality of such models is unsatisfactory be-
cause providing sufficient speech variance information needed
for direct text-to-waveform mapping is difficult without the pro-
cess of generating a mel-spectrogram.

In this paper, we propose AILTTS, a single-stage
lightweight TTS model that achieves high performance by ef-
fectively providing speech variance information required for di-
rect text-to-waveform mapping. A key feature that represents
speech variance is the prosody-related acoustic feature. To ex-
tract such features, we adopt a prosody encoder (posterior) that

uses a mel-spectrogram as an input. We denote the output of
the prosody encoder as a reference prosody embedding, which
is conditioned for the text-to-waveform conversion process dur-
ing training. Because the input of the prosody encoder, i.e.,
mel-spectrogram, is not available during inference, we adopt
a prosody predictor (prior) that estimates the aforementioned
reference prosody embedding only from a text input. To en-
hance the estimation power by using a generative model, we
apply generative adversarial networks (GANs) to the prosody
predictor. The proposed prosody predictor requires few param-
eters and simplifies the inference process while exhibiting high
output performance compared to conventional methods. In ad-
dition, the proposed method is helpful in enhancing the perfor-
mance of the likelihood-based time alignment that inherently
finds the timing information between text and mel-spectrogram.
Our main contributions are as follows.
• We effectively provide the speech variance in single-stage

TTS system by conditioning the prosody-related acoustic em-
bedding. In particular, we adopt an adversarial training to
make the prior reliably estimate the reference prosody em-
bedding from text input.

• As we fully utilize the characteristics of the prosody embed-
ding, the internal alignment model converges fast in the early
stage of training as well as attains robust performance in the
end.

• Experiments confirm that the proposed method considerably
enhances the quality of generated speech even with a small
number of parameters1.

2. Related Work
2.1. Single-stage TTS

There have been several attempts to implement a single-stage
TTS system that can utilize a trainable latent representation.
FastSpeech 2s [5] and EATS [8] successfully implemented the
idea by directly connecting the text encoder and the publicly
accessible vocoder [10, 11], but their generation quality was
not on par with two-stage models. VITS [12] adopts a vari-
ational inference with normalizing flows to connect a feature
extractor [6] and a vocoder [13], and significantly outperforms
two-stage models. However, the normalizing flow module [14]
leads to an additional computational complexity. LiteTTS [9],
which is our backbone model in this work, requires fewer pa-
rameters and low computational complexity with small memory
footprints; however, its output speech quality is unsatisfactory

1The generated audio samples for the experiments are also avail-
able at our demo page https://hcy71o.github.io/AILTTS_
demo/
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Figure 1: Overall architecture of the training (left) and inference (right) stages of the proposed model. The green box represents the
Lite-FFT block, a lightweight transformer-based encoder. The red arrow represents the training objective. The conditional discriminator
for the prosody predictor is omitted for brevity.

because its prior’s estimation power is insufficient. To solve
this problem by strengthening the role of the prior, we adopt a
conditional discriminator and an adversarial training.

2.2. Alignment between text and acoustic features

To align the sequence of text and acoustic features, i.e., mel-
spectrogram, FastSpeech 2/2s [5] utilized an external aligner
[15] that extracts the time-duration of each input text. Recently,
likelihood-based aligners [6,16] have been proposed, which re-
move the reliance on external aligners by internally estimating
the time duration. In this work, we introduce a likelihood-based
internal aligner conditioned on the prosody embedding men-
tioned previously, which robustly and quickly performs align-
ments compared to the conventional methods.

3. Method
3.1. Overview

Figure 1 presents a block diagram of the proposed model
built using the LiteTTS [9] baseline. Our model consists of
a phoneme encoder, a prosody encoder (posterior), a prosody
predictor (prior), an internal aligner including a duration pre-
dictor, an auxiliary predictor, and a vocoder. The overall train-
ing process is as follows. We first calculate the phoneme-scale
prosody embedding hpr taking an attention with the prosody
encoder output (key and value) and a phoneme encoder out-
put hph (query). Then, we time-align the joint embeddings
hph + hpr to mel-spectrogram using the internal aligner, where
the aligned embedding is denoted as I . Finally, we generate
a waveform using a vocoder by conditioning the aligned em-
bedding. To build a low complexity architecture, we adopt a
lightweight transformer-based encoder [9] for the phoneme en-
coder, the prosody encoder, and the prosody predictor.

3.2. Prosody predictor with conditional discriminator

The main purpose of the proposed prosody predictor is to pre-
dict the target prosody embedding hpr from the input phonetic
embedding hph. Considering the dynamic nature of the prosody
embedding, we leverage an effective generative model archi-
tecture that includes various types of discriminators. Defining

the prosody predictor as a generator, the proposed discrimina-
tor distinguishes the target prosody embedding hpr from the
predicted embedding h̃pr , and utilizes phonetic information as
a condition. We adopt a projection-based conditional discrim-
inator [17] that uses the phonetic embedding hph as a condi-
tion (shown in Fig. 2). In addition, we apply feature matching
loss [18] between the generated and target feature maps to sta-
bilize the GAN-based training process, where feature maps are
defined as the outputs of all the 1D convolution layers prior to
the PostConv1D layer. In particular, we extract seven fea-
ture maps: one from the PreConv1D layer and six from three
residual 1D convolutional blocks.

Meanwhile, considering the characteristics of our model,
we use two additional tricks while designing the discriminator.
In the voice-generation process, the I that is aligned to the tim-
ing information of the mel-spectrogram, is used as the input to
the vocoder. Accordingly, we first design the discriminator to
distinguish between two prosody embeddings in the aligned do-
main instead of the original phoneme domain. In the former part
of the discriminator, we align the the time scale of phoneme-
wise embeddings to that of the mel-spectrogram by utilizing
duration values estimated from the internal aligner. Second, we
design the discriminator to have the same receptive field size as
the vocoder, which is extremely small due to a GPU memory
constraint in the training process. It enables the discriminator
to efficiently capture the diverse patterns of input prosody em-
beddings. Based on the generative and discriminative loss of a
least-squares GAN [19], we define the total prosody predictor
loss by considering both reconstruction loss Lrecon and feature
matching loss Lfm:

LG = E(H̃pr,Hph)[(D(H̃pr, Hph)−1)2]+Lrecon+Lfm, (1)

LD = E(Hpr,H̃pr,Hph)[(D(Hpr, Hph)−1)2+(D(H̃pr, Hph))
2],

Lrecon = ||H̃pr −Hpr||1, Lfm =
7∑

i=1

||F̃ i
pr − F i

pr||1, (2)

where H(·) denotes the embedding mapped into a time scale of
the mel-spectrogram, and F i denotes the i-th feature map of the
discriminator.
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Figure 2: Architecture of the proposed conditional discrimina-
tor and the auxiliary predictor*. The main and conditioning
branches comprising 1D convolutional layers are designed to
have the same receptive field size.

3.3. Prosody-conditioned internal aligner

To learn the time alignment between the phoneme and mel-
spectrogram without using an external aligner, we adopt a
likelihood-based internal aligner [6, 16]. As specified in [16],
we maximize the likelihood of monotonic alignments from a
probability matrix calculated by the L2-distance between two
encoded features. Then, phoneme durations (binary matrix) are
obtained by selecting the most probable path from the proba-
bility matrix. The gap between the two matrices is reduced by
minimizing their KL-divergence.

The proposed aligner utilizes the joint embeddings hph +
hpr for the phonetic feature and the mel-spectrogram for the
acoustic feature. Since hpr itself contains local acoustic infor-
mation mapped into the phoneme-level by a previously applied
attention module, learning the alignment becomes much easier
for the aligner than only using hph. Following [5], we jointly
train the duration predictor, which accepts the phonetic embed-
ding hph with a stop gradient. As a result, the proposed aligner
increases the accuracy of alignment, enabling the duration pre-
dictor to estimate more accurate durations.

3.4. Final training loss

The total loss for training our model is defined as follows:

Ltotal = Lvar + Lalign + Lpred + Lvoc + Laux, (3)

where Lvar includes pitch and energy prediction losses applied
to the output of the prosody encoder in [9], and Lalign includes
loss functions for the åinternal aligner [16], including the du-
ration predictor. Lpred and Lvoc represent total losses from
the prosody predictor and the vocoder, respectively, in accor-
dance with their GAN structure. Laux is defined by the L1
loss between the target mel-spectrogram and the predicted mel-
spectrogram obtained by the output of the auxiliary predictor.

Auxiliary predictor To further provide acoustic informa-

tion to the aligned embedding I , we adopt the auxiliary predic-
tor whose input is I . Its architecture is identical to that marked
‘*’ in Fig. 2, with the following exceptions: 1) The number of
output channels for the PostConv1D layer is set to the dimen-
sion of the mel-spectrogram; 2) Layer normalization is applied
to the last stage of every residual 1D convolutional block. Note
that its receptive field is also the same as that of the vocoder;
It enables the auxiliary predictor to efficiently provide acoustic
information to the vocoder input I . In addition, as the auxil-
iary predictor is only used for the training stage, the number of
parameters and computational complexity are not increased.

4. Experiments
4.1. Experimental setup

Dataset and Model Settings We evaluated our model on the
LJSpeech dataset [20]. We converted text sequences into
phoneme sequences with an open-source tool2. To calculate
spectrograms, we set the FFT size, window size, hop size to
1024, 1024, and 256, respectively, regarding the sampling rate
of 22050Hz. Mel-spectrograms were obtained by applying an
80-band mel filter bank. We adopted Univnet-c16 [21] as a
vocoder, which has beneficial lightweight properties by using
a location-variable convolution (LVC) technique [22]. The di-
mensions of all hidden embeddings were set to 256, and the
receptive field of the vocoder, auxiliary predictor, and the con-
ditional discriminator was set to 19.

Training Configuration and Inference We trained our model
with the Adam [23] optimizer with β1 = 0.8, β2 = 0.99. We
set the learning rate and its decaying factor to 2e−4 and 0.999,
respectively. The batch size was set to 24. The entire model
was trained in a fully end-to-end manner, except for the prosody
and duration predictors. Because their training objectives (hpr

and durations) do not converge to meaningful values during the
early training stage, these two modules are jointly trained with
other modules after 300k steps. For the prosody predictor, we
applied only reconstruction loss for the first 50k steps (from
300k to 350k steps) to stabilize the training of GANs. During
inference, the prosody embedding and duration values predicted
by the two abovementioned modules were used as shown in the
right side of Fig 1.

Models for Comparison We compared our model with both
single-stage and two-stage models. To clearly demonstrate the
effectiveness of our method, we maintained the vocoder unified
for all implemented models used for experiments. We first ex-
perimented with LiteTTS by replacing the HiFi-GAN V3 [13]
vocoder with the UnivNet-c16 vocoder for a fair comparison.
For the two-stage models, we adopted two popular AR and non-
AR TTS models (feature extractors) as baselines and UnivNet-
c16 as the vocoder. Tacotron 2 [2] and Glow-TTS [6] were
used as AR- and a non-AR-type feature extractors, respectively.
Here, we utilized pre-trained weights for the feature extractors3,
and trained the vocoder4 using a 80-dim mel-spectrogram as in-
put.

2https://github.com/Kyubyong/g2p
3Tacotron 2:https://github.com/NVIDIA/tacotron2

Glow-TTS:https://github.com/jaywalnut310/
glow-tts

4UnivNet-c16:https://github.com/mindslab-ai/
univnet
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Table 1: Comparisons of MOS with 95% confidence intervals, number of parameters, inference speed, and CER. 15 test samples were
used for MOS test, and 80 test samples were used for inference speed and CER tests.

Model MOS #Params. CPU inference Real-time CER

Ground truth 4.80±0.07 - - - 3.99
AILTTS 3.93±0.11 13.4M 329.3kHz ×14.94 9.18
LiteTTS 3.71±0.10 13.4M 329.8kHz ×14.95 5.22
Tacotron 2 3.93±0.10 29.4M 41.8kHz ×1.90 11.04
Glow-TTS 3.57±0.12 30.0M 208.6kHz ×9.46 6.89

Table 2: CMOS results of ablation studies.

Model CMOS

AILTTS 0

without Conditional Discriminator −0.214
without Prosody-conditioned Aligner −0.871

4.2. Results

Table 1 summarizes the evaluation metrics for our proposed
AILTTS model, including mean opinion scores (MOS), model
parameters, inference speed, and character error rate (CER). For
MOS, we randomly selected 15 test audio samples to measure
the naturalness of synthesized speech. To measure the intelli-
gibility, we calculated CER of the synthesized speech by tran-
scribing it using a pre-trained speech recognition model from
the SpeechBrain toolkit [24]. For measuring the CER and infer-
ence speed, we generated 80 samples using arbitrary text scripts
as input.

In terms of naturalness, our AILTTS model outperformed
two non-AR baselines, LiteTTS (by +0.22 MOS) and Glow-
TTS (by +0.36 MOS), with a small number of parameters
(13.4M). Also, our model produced natural speech comparable
to that of the AR-based TTS model, Tacotron 2. By contrast, our
model achieves slightly higher (worse) CER than the most sim-
ilar baseline, LiteTTS, showing the trade-off between natural-
ness and intelligibility. It can be explained in terms of the mode-
seeking behavior of GANs. In the first viewpoint, AILTTS ef-
fectively addresses the problem of prosody oversmoothing in
LiteTTS by modeling the prosody embedding with a more com-
plex distribution with GANs5. However, it can introduce some
difficulties in robustly predicting the prosody embedding, which
lead to lower intelligibility in our experiments. In summary,
AILTTS produces speech that sounds natural than LiteTTS, al-
beit with slightly lower intelligibility score. By discussing the
impact of GAN’s mode-seeking behavior on the distribution
of the prosody embedding, our findings provide a more com-
plete understanding of the naturalness-intelligibility trade-off
observed in AILTTS, emphasizing its effectiveness in improv-
ing synthesized speech quality. Furthermore, we evaluated the
inference speed using an Intel Core i5 Quad-Core 2.0-GHz CPU
and found that our proposed model performs almost as fast as
LiteTTS, while outperforming the baseline two-stage models.

4.3. Analysis

Ablation Study We performed a comparison MOS (CMOS)
test on the test dataset to investigate the effect of the proposed
methods on the overall performance. Table 2 presents the re-

5Note that LiteTTS only uses L1 loss for the prior (i.e., prosody pre-
dictor), which models the prosody embedding with a simple Laplacian
distribution.

Figure 3: Comparison of the convergence rate between a con-
ventional method (using hph as the aligner input) and the pro-
posed method (using hph + hpr as the aligner input). For each
iteration, the MCD-DTW values from 10 test samples were av-
eraged.

sults of the two ablation studies. In the first study, the condi-
tional discriminator was removed and only reconstruction loss
was applied. The result shows that adopting a GANs for the
prosody predictor enhances the naturalness of generated speech
because it improves the estimation power of the prior compared
to the one using only L1 loss. For the second study, the input
of the internal aligner hph + hpr was replaced with phonetic
embedding hph. The experimental result also demonstrates that
providing phoneme-level acoustic information (prosody embed-
ding) to the aligner is helpful for further improving the genera-
tion quality due to the robust time alignment between text and
acoustic features.
Alignment Convergence We also compared the alignment con-
vergence rate of the two experiments from the ablation study
of the prosody-conditioned aligner. To check this, we calcu-
lated the mean mel-cepstral distance (MCD) between synthe-
sized and ground-truth audio samples after synchronizing them
using time with dynamic time warping (DTW) [25]. As shown
in Fig 3, the MCD-DTW values of the proposed aligner rapidly
decrease during the early stage of training (prior to 4k itera-
tions). Further, the proposed method outperformed the baseline
with lower MCD-DTW values in every iteration, in accordance
with the second result of the ablation study.

5. Conclusion
In this paper, we propose an adversarial learning method to re-
liably estimate a prosody embedding, an intermediate acous-
tic feature that plays a significant role in generating natural
speech in single-stage lightweight TTS systems. The pro-
posed model, equipped with an internal aligner that synergizes
with the prosody embedding, outperforms the Glow-TTS based
model (+0.36 MOS) and LiteTTS (+0.22 MOS) in terms of nat-
uralness while preserving its lightweight properties, at the cost
of a minor decrease in intelligibility.
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