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Abstract
This paper presents TridentSE, a new and innovative ar-

chitecture for speech enhancement that efficiently combines lo-
cal details and global information. The architecture uses time-
frequency bin level representation for capturing detailed in-
formation and a small number of global tokens for process-
ing global information. It employs cross attention modules to
transfer information between the local and global representa-
tion, and separates the global tokens into two groups to pro-
cess inter- and intra-frame information. A metric discrimina-
tor is utilized to increase perceptual quality and achieve im-
proved performance compared to previous speech enhancement
methods. With lower computational cost, TridentSE achieved
a PESQ of 3.47 on the VoiceBank+DEMAND dataset and a
PESQ of 3.44 on the DNS no-reverb testset, outperforming most
previous methods. Visualization shows that the global tokens
demonstrate diverse and interpretable global patterns.
Index Terms: Speech enhancement, global representation

1. Introduction
Speech enhancement (SE) aims to improve the quality of speech
when it is contaminated with noise. With the advent of the deep
learning era, significant progress has been made in speech en-
hancement techniques. One line of research is the time-domain
methods [1, 2, 3], which process speech directly in waveform
domain. Another line of research is the frequency-domain
methods [4, 5, 6], which process speech in the T-F spectrogram
domain. Our method falls into the second category, with the
goal of designing an effective frequency-domain approach for
single-channel speech enhancement.

For frequency-domain SE methods, the input is a time-
frequency (T-F) spectrogram. Research [7] has shown that it is
more effective to use T-F masks as the prediction target instead
of T-F values. As a result, SE addresses a dense classification
or prediction problem, where each T-F bin has its correspond-
ing prediction output. The importance of T-F bin level details,
especially the phase structure, has increased with the develop-
ment of masking methods [8, 9, 10, 11], requiring the SE net-
work to accurately capture local details. However, prior work
has indicated that a successful SE network must also understand
global (long-range) information on both the frequency [4] and
time [12] axis. In short, an SE network must learn both local
details and global information.

The simultaneous learning of these two types of informa-
tion is a non-trivial problem. Existing frequency-domain SE
methods either adopt a cylindrical network structure [4, 6, 12]
or a U-shaped structure [13, 5]. In the first category, the fea-
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ture map retains its original T-F resolution as it is transformed
by the SE network. While dense local information is naturally
processed in each T-F bin, sparse global information is also ag-
gregated by each T-F bin without much coordination, which is
computationally inefficient. In the second category, the feature
map undergoes gradual down-sampling during its transforma-
tion. At its lowest resolution, the global semantic information
can be computed efficiently. The transformed feature map is
then up-sampled to its original size, with skip connections used
to merge the low-level and high-level features. It is important
to note that the full-resolution feature is not merged with high-
level features until the end of the network. This limitation re-
duces the network’s ability to fuse information compared to the
cylindrical architecture, which processes both low- and high-
level information at every layer.

In this work, we present a novel third network structure for
the speech enhancement task, called TridentSE. It consists of
a main network that maintains full-resolution feature maps and
two companion branches, each of which only holds 16 global
tokens. The main network is responsible for processing dense,
low-level details, while the companion branches handle global
information. Temporal and frequency tokens are extracted from
the original feature map through a cross-attention operation and
processed in separate units. The global temporal and frequency
information is then injected back into the main network via an-
other cross-attention operation. The three-branch network ar-
chitecture resembles a trident, hence the name TridentSE.

The use of two dedicated branches in TridentSE provides
several advantages. Compared to the cylindrical network struc-
ture, it greatly reduces the redundancy of computing global in-
formation. And compared to the U-shaped network structure, it
has the ability to perform long-range computation from the start.
Additionally, the fusion of information through cross-attention
is stronger than the simple addition method commonly used in
skip connections.

Experimental results demonstrate that TridentSE outper-
forms previous methods by achieving higher enhancement qual-
ity with lower computational complexity. Visualization con-
firms that the global tokens learned by TridentSE are diverse
and interpretable.

2. Method
2.1. Overview of TridentSE

The T-F masking framework (as discussed in [12]) is adopted
to perform the speech enhancement task, which is to estimate
the clean waveform from the input noisy signal. The overall
architecture of the proposed T-F mask prediction network, Tri-
dentSE, is shown in Fig.1.

TridentSE is composed of three main components: the en-
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Figure 1: Architecture of the proposed TridentSE. The query, key, and value inputs of the multi-head attention operations are denoted
by q, k, and v, respectively.

coder, the backbone, and the decoder. The encoder extracts lo-
cal time-frequency features from the input spectrogram, while
the decoder decodes the time-frequency representation into a
complex ratio mask (Mc) with a shape of (T × F × 2).

The encoder contains two convolutional blocks, each with
C output channels. The kernel sizes of these two blocks are
1 × 7 and 7 × 1, respectively. Both blocks include batch nor-
malization (BN) and ReLU activation after the convolution op-
eration.

The decoder includes a 1× 1 gated-convolutional layer, Ld

depth-wise separable convolutional blocks (Conv-FFN), and a
linear layer that maps C-dimensional feature vectors into com-
plex numbers. The amplitude of the final output is restricted by
the Tanh activation. Each conv layer in Conv-FFN is followed
by GELU activation, and each Conv-FFN is equipped with a
residue connection and post-layer normalization.

The backbone of the network consists of L trident blocks
and represents the major part of TridentSE.

2.2. Trident block

Each trident block consists of three branches: the main branch
(Bm), the time-domain global branch (Bt), and the frequency-
domain global branch (Bf ). The main branch (Bm) calculates
local information for each T-F bin using a Conv-FFN module.
This is done by aggregating the local information within the
range of a K ×K kernel size using a 2D depth-wise separable
convolution.

For the two companion branches (Bt and Bf ), they form a
duality pair and can be easily switched by changing the sub-
scripts between T (or t) and F (or f ). For simplicity, we
will only describe the network architecture in the time-domain
global branch (Bt) in this section. The branch (Bt) reduces the
number of tokens along the time axis to MT , while maintain-
ing full frequency resolution. The initial feature of this branch,
X0

t ∈ RMT×F×C , is obtained by repeating a bank of MT ini-
tial global tokens Gt ∈ RMT×1×C along the frequency axis F
times. The Gt is a learnable model parameter.

The calculation of Bt involves three modules. First, the
token-mix and the frequency self-attention (F-SA) modules mix
the feature vectors along the MT and F axes, respectively, as
shown in Fig.1 (d) and (e). Then, a feed-forward network (FFN)
transforms the feature along the channel dimension.

The main branch (Bm) and the companion branches
(Bt and Bf ) communicate information through input cross-
attention (In-CA) and output-cross-attention (Out-CA) mod-
ules, as indicated by the thick border in Fig. 1 (a). As shown in
Fig. 1 (b) and (c), each row of the time-domain global feature
interacts with its corresponding row of the full-resolution fea-
ture and each column of the frequency-domain global feature
interacts with its corresponding column of the full-resolution
feature. We chose cross-attention (CA) as the method of infor-
mation communication because of its flexibility in transform-
ing between features with different numbers of tokens. It also
calculates dynamic weights for information aggregation and
broadcast, which can adapt to variations in different input mix-
ture signals.

The information communication is made aware of the time-
frequency structure by concatenating the main branch feature
with a sinusoidal 2D-positional encoding before it is fed into
the In-CA and Out-CA modules. The Conv-FFN, FFN, In-CA,
Token-Mix, and T-SA sub-modules have residual connections
and post-layer normalization. The hidden layers of the Conv-
FFN and FFN also include GELU activation.

To summarize, there are six hyperparameters that define the
model: the number of channels C, the size of the convolution
kernel K, the number of global tokens MT ,MF , the number of
trident blocks L, and the number of decoder Conv-FFNs Ld.

2.3. Loss function

Our loss function is applied to both the waveform domain and
spectrogram domain. On the spectrogram domain, we use the
power-compressed amplitude MSE loss La and phase-aware
MSE loss Lp as described in [4]. On the waveform domain,
we calculate the MSE loss Lw. To optimize the PESQ score di-
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rectly, we adopt the MetricGAN method from [14] which intro-
duces a metric discriminator D that predicts the differentiable
PESQ score for training the SE network. This generates an ad-
ditional loss term LGAN for the predicted spectrogram. The
total loss L is a combination of these four losses and is calcu-
lated according to the following formula:

La = MSE(|Ŝ|p, |S|p), (1)

Lp = MSE(Ŝ/|Ŝ|1−p,S/|S|1−p), (2)
Lw = MSE(ŝ, s), (3)

LGAN = ||1−D(S, Ŝ)||2 (4)
L = (La + Lp + Lw)/3 + λLGAN , (5)

where Ŝ, ŝ, S and s represent the enhanced spectrogram and
waveform, the ground-truth clean spectrogram, and waveform,
respectively. | · | calculates the amplitude of the complex spec-
trogram and p is the power of the spectrogram compression, set
to p = 0.3. The weight of the GAN loss term, λ, is set to 0.005
in our experiments.

The loss for training the discriminator D is calculated as
follows:

LD = ||1−D(S,S)||2 + ||Q(S, Ŝ)−D(S, Ŝ)||2, (6)

where Q(S, Ŝ) is the normalized PESQ score between S and
Ŝ ranged from 0 to 1.

3. Experiments
3.1. Dataset and evaluation metrics

We evaluate our method using two datasets. The first is the
widely-used VoiceBank+DEMAND dataset [15] which con-
tains paired clean and pre-mixed noisy speech samples. The
clean speech comes from the VoiceBank corpus [16] and con-
sists of 11,572 utterances from 28 speakers in the training set,
and 872 utterances from two speakers in the test set. The noisy
speech samples in the training set are mixed with 10 types of
noise, including eight from the DEMAND database and two ar-
tificially generated noises, at signal-to-noise ratios (SNRs) of 0,
5, 10, and 15 dB. In the test set, the speech is mixed with five
types of noise from the DEMAND database, at SNRs of 2.5,
7.5, 12.5, and 17.5 dB. None of the noise conditions or speak-
ers in the test set were present in the training set.

The second dataset we use is the large-scale DNS dataset
[17], which includes 500 hours of clean speech from 2150
speakers, and over 180 hours of noise waveform from 150
classes. During the training stage, we perform online mixing
to obtain noisy-clean speech pairs. To do so, 75% of the clean
speech is convolved with randomly selected room impulse re-
sponses (RIRs) from the set provided in [18], and the clean or
reverberant speech is mixed with randomly selected noise, with
a uniformly sampled SNR ranging from -5 to 20 dB. We evalu-
ate our method on two test sets: ”no reverb” and ”with reverb”,
each of which contains 150 noisy-clean speech pairs.

We evaluate the enhancement quality using a total of five
metrics, with higher scores indicating better results. Both
datasets are evaluated using wide-band PESQ and short-term
objective intelligibility (STOI) to measure perceptual qual-
ity and intelligibility, respectively. In VoiceBank+DEMAND
dataset, we use three additional MOS-based metrics [19]: MOS
prediction of the signal distortion (CSIG), of the intrusiveness
of background noise (CBAK), and of the overall effect (COVL).
These metrics are scored on a scale of 1 to 5.

Table 1: The effect of different configurations in TridentSE.

# MT MF MGAN L LD FLOPS RTF PESQ

G1 0 0 w/o 6 6 18.3G 0.23 3.01
G2 1 1 w/o 3 4 23.6G 0.22 3.23
G3 2 2 w/o 3 4 24.0G 0.22 3.24
G4 6 6 w/o 3 4 25.3G 0.23 3.30
G5 16 16 w/o 3 4 28.7G 0.24 3.30

M 16 16 w/ 3 4 28.7G 0.24 3.44

A1 axial axial w/ 3 4 36.4G 0.35 3.41
A2 1-group 1-group w/ 3 4 18.9G 0.20 3.06

In terms of computational complexity, we report the FLOPS
for a 3-second input signal and the real-time factor (RTF) on
six Intel(R) Xeon(R) E5-2690 v3 CPU cores. Additionally, we
report the model size in terms of the number of parameters.

3.2. Implementation details

All the utterances are resampled to 16kHz and we use 3-second
segments for training. STFT is computed using a Hann win-
dow of length 20ms, hop length of 10ms, and FFT size of
324. Four hyper-parameters, MT ,MF , L, Ld, are tuned in our
experiments. The other hyper-parameters are set as follows:
C = 96, K = 7. The head number of T-SA, F-SA, In-CA,
and Out-CA are set to 2, 2, 3, and 3, respectively. The hidden
size of FFN and Conv-FFN is 96. The sinusoidal 2D-positional
encoding has 64 channels. The model is trained using LAMB
[20] optimizer with learning rate of 0.0008. The metric discrim-
inator is trained with Adam [21] optimizer with a learning rate
of 0.0004. The warm-up steps and batch size are set to 5,000
and 8, respectively. The training epochs are 300 and 120 for
VoiceBank+DEMAND dataset and DNS dataset, respectively.

3.3. Global representation and adversarial training

The results of our experiments on the VoiceBank+DEMAND
dataset are presented in Table 1. The number of global tokens
was gradually increased from G1 to G5 until the PESQ score no
longer improved. In experiment G1, companion branches have
been removed, resulting in a lower computational cost, which
is compensated by adding extra layers. However, the compar-
ison between G1 and G2 shows that companion branches are
crucial for a significant improvement in PESQ scores, with an
increase of 0.22. As the number of global tokens increases, we
observe a relatively large improvement in PESQ scores of 0.07,
which eventually reaches saturation at a relatively small num-
ber of 16 global tokens, suggesting that processing global infor-
mation does not require intensive computation. The full model,
TridentSE, was achieved in experiment M by adding adversarial
training to G5, resulting in a 0.14 improvement in PESQ scores.

3.4. Ablation study

We conducted an ablation study on our global information pro-
cessing method. In experiment A1 of Table 1, we replace the
two companion branches with two axial attention blocks that
calculates attention along time and frequency axis respectively.
This resulted in a 27% increase in FLOPS, 46% in RTF and a
decrease of 0.03 in PESQ, demonstrating the superiority of the
Trident architecture over traditional axial attention in speech en-
hancement tasks. Experiment A2, which uses only one compan-
ion branch to directly aggregate information from all T-F bins,
resulted in a large drop in PESQ of 0.38, highlighting the ne-
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Table 2: System comparison on VoiceBank+DEMAND dataset. Data with label ’*’ is our reproduced result.

Architecture PESQ CSIG CBAK COVL STOI(%) FLOPS RTF #Param.

Noisy - 1.97 3.35 2.44 2.63 92.1 0 0 0

SEGAN [22] U-shaped 2.16 3.48 2.94 2.80 - - - -
DEMUCS [2] U-shaped 3.07 4.31 3.40 3.63 95 77.8G 1.18 60.8M
sudo-rm-rf [23] U-shaped 3.11* 4.36* 3.58* 3.74* 95 21.9G 0.20 4.85M
SE-Conformer [3] U-shaped 3.13 4.45 3.55 3.82 95 - - -

DCCRN [5] U-shaped 2.68 3.88 3.18 3.27 94 25.2G 0.26 3.67M
TFT-Net [12] cylindrical 2.75 3.93 3.44 3.34 - 295G 0.73 5.81M
PHASEN [4] cylindrical 2.99 4.21 3.55 3.62 - 206G 0.51 20.9M
SN-Net [24] cylindrical 3.12 4.39 3.60 3.77 - - - -
DB-AIAT [25] cylindrical 3.31 4.61 3.75 3.96 96 68.0G 3.81 2.81M
DPT-FSNET [6] cylindrical 3.33 4.58 3.72 4.00 96 55.7G* 1.12* 0.88M
CMGAN [26] cylindrical 3.41 4.63 3.94 4.12 96 116G 1.02 1.83M

TridentSE-S Trident 3.36 4.61 3.75 3.99 96 19.8G 0.16 1.00M
TridentSE-M Trident 3.44 4.65 3.77 4.06 96 28.7G 0.24 1.42M
TridentSE-L Trident 3.47 4.70 3.81 4.10 96 59.8G 0.49 3.03M

cessity of separate T and F processing. Our results indicate that
the proposed Trident architecture is a superior choice compared
to evaluated alternatives.

3.5. System comparison

In Table 2, we compare our method with other time-domain
and T-F domain methods with U-shaped and cylindrical archi-
tecture on VoiceBank+DEMAND dataset. TridentSE-M is the
same model as the experiment M in Table 1. TridentSE-S and
TridentSE-L are small and large version of TridentSE, respec-
tively. The only difference is the model depth. In TridentSE-S,
L = Ld = 2, while in TridentSE-L, L = 7 and Ld = 8.
TridentSE-S has the smallest FLOPS and RTF among all the
listed methods, but the enhancement quality outperforms all
other methods except CMGAN and the COVL score of DPT-
FSNET. Compared with CMGAN, TridentSE-M and -L achieve
higher PESQ and CSIG with only one-forth and one-half of
computational cost, respectively. In summary, Trident archi-
tecture is faster and better than the previous methods. Table 3
shows the results on DNS dataset. With half of the inference
time, TridentSE-L achieves a new state-of-the-art on PESQ and
outperforms DPT-FSNET by a large margin on no reverb test-
set.

Table 3: Results on DNS no reverb / with reverb testset.

PESQ STOI(%) RTF

Noisy 1.58 / 1.82 91.52 / 86.62 0

PoCoNet[27] 2.75 / 2.83 - / - -
FullSubNet[28] 2.78 / 2.97 96.11 / 92.62 0.39
DPT-FSNet[6] 3.26 / 3.53 97.68 / 95.23 1.12

TridentSE-L 3.44 / 3.50 97.86 / 95.22 0.49

3.6. Attention visualization

In this experiment, we figure out what is learned in the global
tokens by visualizing In-CA’s attention maps as shown in Fig-
ure 2. The attention map is obtained by enhancing a sam-
ple with SNR of 1.4dB using TridentSE-L. (b1-b3) and (c1-
c3) demonstrate the shallow layer attention of three global to-
kens in the frequency and time global branch, respectively.

They mainly attend to different wide frequency bands and time
spans. As the layer goes deeper, the attention map shows more
speech-specific patterns, such as harmonics (d2) and formants
(d3) which are the important evidence of identifying phonemes.
Some other global tokens focus on noise-dominant T-F bins (d1)
to capture noise-specific information. All these attention maps
are distributed globally in the spectrogram. Therefore we can
confirm that the global tokens have learned meaningful global
information.

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

Figure 2: Visualization of spectrogram and attention maps.
(a1-a3): STFT spectrogram of noisy, enhanced, and clean
speech. (b1-b3 & c1-c3): Shallow layer attention maps on
F-global and T-global branch. (d1-d3): Attention maps that
focus on speech or noise patterns

4. Conclusion
We have introduced a new speech enhancement network called
TridentSE. This network features a unique trident structure,
with a main network and two accompanying branches. The
main network, with its lightweight design, preserves full spec-
trogram resolution to capture low-level details in each T-F
bin. Meanwhile, the two companion branches utilize a total
of 32 global tokens to efficiently extract and process concen-
trated global information. With the added use of adversarial
training, TridentSE outperforms previous methods in both the
VoiceBank+DEMAND and DNS datasets, while requiring sig-
nificantly less computational resources. The attention maps
demonstrate that the global tokens have acquired a diverse and
meaningful range of global information. For future work, we
aim to develop a causal version of TridentSE, in order to meet
the demands of low-delay, real-time applications.

3842



5. References
[1] Yi Luo and Nima Mesgarani, “Conv-tasnet: Surpassing ideal

time-frequency magnitude masking for speech separation,” IEEE
ACM Trans. Audio Speech Lang. Process., 2019.
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