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Abstract
This paper proposes an improved Goodness of Pronuncia-

tion (GoP) that utilizes Uncertainty Quantification (UQ) for au-
tomatic speech intelligibility assessment for dysarthric speech.
Current GoP methods rely heavily on neural network-driven
overconfident predictions, which is unsuitable for assessing
dysarthric speech due to its significant acoustic differences from
healthy speech. To alleviate the problem, UQ techniques were
used on GoP by 1) normalizing the phoneme prediction (en-
tropy, margin, maxlogit, logit-margin) and 2) modifying the
scoring function (scaling, prior normalization). As a result,
prior-normalized maxlogit GoP achieves the best performance,
with a relative increase of 5.66%, 3.91%, and 23.65% compared
to the baseline GoP for English, Korean, and Tamil, respec-
tively. Furthermore, phoneme analysis is conducted to identify
which phoneme scores significantly correlate with intelligibility
scores in each language.
Index Terms: dysarthric speech, speech intelligibility, auto-
matic assessment, goodness of pronunciation, uncertainty quan-
tification

1. Introduction
Dysarthria is a motor speech disorder caused by weakness or
paralysis of the articulators [1]. People with dysarthria often
suffer from degraded speech intelligibility, repeated communi-
cation failures, and ultimately low quality of life. Accordingly,
dysarthric speech assessments regarding speech intelligibility
are conducted to check the patient’s status and track the effec-
tiveness of treatments [2]. While the common way of dysarthric
speech assessment is perceptual evaluation, the method is often
subjective and laborious. Therefore, automatic speech assess-
ment with objective and rapid results can assist clinicians in di-
agnosis and treatment planning.

There are two main approaches to automatic assessment of
dysarthric speech. The first approach is to propose a list of
hand-crafted features that are expected to capture the character-
istics of dysarthric speech. Explored feature sets include voice
quality features [3], prosody features [4], articulation or pro-
nunciation features [5, 6], and their combinations [7, 8]. This
approach has the benefit of having medical implications, as it
provides a transparent understanding of the features employed
for automatic assessment. Nevertheless, this approach has the
drawback that features that could be valuable in the assess-
ment could be discarded during feature extraction. The sec-
ond approach involves leveraging the capabilities of neural net-
works (NNs), which can achieve better results by using raw in-
puts. [9, 10]. However, due to the black-box nature of NNs, the
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Figure 1: Example of GoP scores for each phone within an ut-
terance.

approach limits interpretability, which clinicians often crave for.
Recent studies have attempted to integrate the benefits of

both approaches, by enforcing the neural networks to learn
the intermediate labels used for perceptual assessment, such
as voice quality, articulation precision, nasality, and prosody
[11,12]. Furthermore, certain studies focused on decoding mis-
articulation characteristics, which are the prominent aspect of
dysarthric speech across languages [8] and a significant fac-
tor that influences speech intelligibility [13]. For instance,
the framework that measures the level of phonetic impairment
was proposed by utilizing the activations of the hidden neu-
ron [14, 15]. While the method can provide overall phonetic
characteristics of utterances, it is unable to provide assessments
at the level of individual phonemes, which can help clinicians to
pinpoint specific phonemes that require pronunciation training.

A common approach of phoneme-level speech assessment
is to use the parallel NN that employs parallel datasets. The
NN was trained using the same set of utterances recorded by
both healthy speakers and patients to learn how to distinguish
whether each phone in the utterances was from healthy or dis-
ordered speech [16, 17]. However, obtaining parallel datasets
is a challenging task, especially for disordered speech. More-
over, this approach often constrains the analysis to pre-defined
speech materials, which may not capture the natural speech pat-
terns utilized in everyday communication.

Another conventional approach of phoneme-level pronun-
ciation evaluation is Goodness of Pronunciation (GoP) [18].
GoP, which is defined as the degree of similarity between pro-
duced and canonical pronunciation of phonemes, has two ad-
vantages in automatic speech assessments. First, it provides de-
tailed information on which phonemes are mispronounced and
to what extent each phoneme is atypical. As demonstrated in
Figure 1, one can analyze the scores of each phoneme within
a single utterance. Second, it does not necessitate a parallel
dataset for model training. While GoP has often been applied
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Figure 2: Overview of the improved GoP with UQ methods.

to assess non-native (L2) speech pronunciation, some studies
have also verified its potential use in assessing speech disor-
ders. [19, 20].

With the development of neural networks (NNs), variants of
GoP which employ probabilities from the state-of-the-art neural
networks have been suggested [12,21,22]. However, using these
probabilities without taking into account the modern NNs’ ten-
dency towards overconfidence can result in inaccurate conclu-
sions: NNs often generate probabilities close to 1.0 even when
their predictions are incorrect [23]. Since GoP relies heavily
on probabilities, this can be especially problematic. The issue
is compounded when the model encounters out-of-distribution
(OOD) inputs, which are data that differ significantly from the
training data’s distribution [24], such as dysarthric speech for
healthy speech. To alleviate such issues, Uncertainty Quan-
tification (UQ) techniques, techniques to combat OOD prob-
lems [23, 24], can be applied.

This paper proposes improved GoP for automatic speech
intelligibility assessment for dysarthric speech by employing
Uncertainty Quantification (UQ) methods in two ways: (1) nor-
malizing the phoneme prediction and (2) modifying the scoring
function. As pathological speech greatly differs in acoustics
from healthy speech [25], dysarthric speech can be also under-
stood as OOD input. Therefore, we employ conventional UQ
methods to improve GoP calculations for dysarthric speech as-
sessment. To assess the effectiveness of the improved GoP with
UQ techniques, three dysarthric datasets, namely, UASpeech
English, QoLT Korean, and SSNCE Tamil dataset, are utilized.
To summarize, this paper redefines the current versions of GoP
from a UQ standpoint and evaluates the effectiveness of UQ
methods in improving GoPs.

2. Proposed approach
The study applies various conventional UQ methods to calculate
GoP scores, which are demonstrated in Figure 2. We release the
source code of all the experiments.1

2.1. Prerequisite: Goodness of Pronunciation (GoP)

In this subsection, we provide a succinct summary of the ex-
isting GoP-based methods from the uncertainty quantification
(UQ) perspective. Starting from GMM-GoP, Equation (1)
presents the definition of the corresponding method: Given a
phone p during frames f ∈ F with frame-wise phone probabil-
ity and its logits as P f (p|f) and Lf (p|f), and the total phone

1https://github.com/juice500ml/
dysarthria-gop

set as Q, GMM-GoP [18] is defined as an averaged log proba-
bility across the phone duration, EF [logP f (p|f)]:

sGMM-GoP(p) =
1

|F |
∑

f∈F
log

eL
f (p|f)

∑
q∈Q e

Lf (q|f) . (1)

Averaging the log probabilities can be seen as a form of tem-
poral ensembling [26], which is a well-known UQ method, as
it combines the predictions from multiple frames into a single
estimate. Further, directly using the probability output is often
used as a baseline for OOD [24].

Another popular baseline is NN-GoP [21], which improved
GMM-GoP by leveraging the development of deep neural net-
works and modifying the score function:

P̄ (p|F ) = EF [P f (p|f)] =
1

|F |
∑

f∈F
P f (p|f), (2)

sNN-GoP(p) = log P̄ (p|F )−max
q∈Q

log P̄ (q|F ). (3)

Finally, DNN-GoP [21] normalizes the phone probability
with the phone prior [27]:

sDNN-GoP(p) = P̄ (p|F )/P (p). (4)

2.2. Normalizing the phoneme predictions

There are two commonly used ways to calibrate the posterior
prediction P (p|F ) by modifying its logit L(p|F ). One is to
normalize by removing the influence of the prior P (p) [21, 27]
(Prior), and the other is to reduce the peakiness by temperature
scaling [23] Scale:

Lf (p, f) = Lf (p|f)− logP (p), (5)

Lf
T (p|f) = Lf (p|f)/T, (6)

where T is the hyperparameter and the modified predictions are
the softmax function’s output of the corresponding logits.

Normalizing via the prior is the same with the idea of DNN-
GoP, where it is commonly applied to disentangle the training
distribution of the phone recognizer, where majority classes are
often overconfident than minority classes [27]. Temperature
scaling is also commonly used as a baseline for UQ, as it avoids
the peaky distribution of posterior probabilities.

2.3. Modifying the scoring function

We first employ one of the most common methods to measure
the data uncertainty: Entropy H and Margin M . Entropy mea-
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sures the uncertainty associated with a set of possible outcomes:

sH(p) = −
∑

q∈Q
P̄ (q|F ) log P̄ (p|F ). (7)

Specifically, the entropy represents the average amount of infor-
mation needed to specify which outcome was actually observed.
Entropy does not require ground truth labels, so it is often used
when obtaining the labels is expensive.

Margin refers to the difference between the true class and
the highest class probabilities for a given prediction:

sM(p) = P̄ (p|F )− max
q∈Q−{p}

P̄ (q|F ). (8)

Note that the equation is similar to that of NN-GoP except the
above definition excludes the true phone as Q− {p}.

On the other hand, the MaxLogit [28] and LogitMargin
involves directly utilizing the logits. Softmax function is often
known to squash the useful information inside logits, so that it
can normalize the sum into one. Hence, one can apply the idea
of both GMM-GoP (directly using the probability) and NN-GoP
(using the Margin):

sMaxLogit(p) =
1

|F |
∑

f∈F
Lf (p|f) = L̄(p|F ), (9)

sLogitMargin(p) = L̄(p|F )− max
q∈Q−{p}

L̄(p|F ). (10)

3. Experimental setting
3.1. Datasets

To train the acoustic model to learn the distribution of healthy
phonemes, we use the Common Phone dataset [29] and the L2-
ARCTIC dataset [30]. To evaluate the efficacy of our proposed
approach, three dysarthric datasets are utilized: UASpeech En-
glish dataset [31], QoLT Korean dataset [32], and SSNCE Tamil
dataset [33]. All three datasets contain dysarthric speech from
speakers suffering from Cerebral Palsy. We focus the analysis
on sentences from QoLT and SSNCE dysarthric datasets, since
the Common Phone and L2-ARCTIC datasets solely consist
of sentences. Word materials are analyzed for the UASpeech
dataset, since the dataset contains words only.

3.1.1. Common Phone dataset and L2-ARCTIC dataset

The acoustic model is trained on healthy speech using the Com-
mon Phone dataset and the L2-ARCTIC dataset, which were
selected for their extensive phoneme coverage and phonetic
annotations. These datasets are expected to cover most of
the phonemes used in English, Korean, and Tamil. Common
Phone dataset [29] is a gender-balanced, multilingual corpus
with six languages. Comprised of more than 11,000 speakers,
the dataset includes around 116 hours of speech. L2-ARCTIC
dataset [30] is a speech corpus often used for detecting mispro-
nunciations in non-native English speakers. It includes record-
ings from 24 speakers with a balanced distribution of gender
and first language, representing six different countries. On av-
erage, each speaker has around 67.7 minutes of speech, which
has a total duration of approximately 27.1 hours.

3.1.2. UASpeech English dysarthric datasat

UASpeech dataset [31] is a publicly-available English
dysarthric speech dataset, which contains 15 dysarthria speak-
ers (11 males, 4 females) and 13 aged-matched healthy speak-
ers (9 males, 4 females). Speakers were classified based on the

scores on the Frenchay Dysarthria Assessment (FDA) [34]: 5
mild speakers (score 1), 3 moderate-to-severe speakers (score
2), 3 moderate-to-severe speakers (score 3), and 4 severe speak-
ers (score 4). Montreal Forced Aligner (MFA) [35] is employed
to extract phoneme-level alignments.

3.1.3. QoLT Korean dysarthric dataset

Quality of Life Technology (QoLT) dataset [32] is a privately
held dataset of Korean dysarthric speech. The corpus consists
of 70 dysarthric speakers (45 males, 25 females) and 10 healthy
speakers (5 males, 5 females). Each speaker recorded five pho-
netically balanced sentences twice. Five speech pathologists
were asked to determine the intelligibility levels of the speakers
on a 5-point Likert scale. With a score of 0 considered healthy,
the dataset holds 25 mild (score 1), 26 mild-to-moderate (score
2), 12 moderate-to-severe (score 3), and 7 severe (score 4) in-
telligibility level speakers. Accordingly, 100 healthy utterances
and 700 dysarthric utterances are used for the experiment. Af-
ter using MFA to align the phonemes, two linguists further fixed
the automated alignment for better quality.

3.1.4. SSNCE Tamil dysarthric dataset

SSNCE dataset [33] is a Tamil dysarthric speech corpus avail-
able by request. The dataset includes recordings from 20
dysarthric speakers (13 males and 7 females) and 10 healthy
speakers (5 males and 5 females). The dataset groups dysarthric
speakers based on their speech intelligibility scores, which were
marked by two speech pathologists on a 7-point Likert scale. A
score of 0 considered healthy, score 1 and 2 are grouped into
mild (score 1), score 3 and 4 into moderate (score 2), and score
5 and 6 into severe (score 3). There were different numbers
of speakers in each score category: 7 with mild, 10 with mod-
erate, and 3 with severe. For the experiment, we used a total
of 5,200 utterances from the dysarthric speakers and 2,600 ut-
terances from the healthy speakers, with 260 unique sentences
recorded from each speaker. For forced alignments, we use the
time-aligned phonetic transcriptions provided by the dataset.

3.2. Experimental details

In this study, we evaluated GoP performance by following the
approach of the previous study [20]. Concretely, rather than
evaluating the models based on their accuracy in mispronunci-
ation detection, our objective was to calculate the average GoP
score for each utterance and compare their correlation with the
intelligibility scores.

3.2.1. Phoneme Prediction

To fairly compare the performances between various GoP scor-
ing functions, we extract the posterior probabilities from the
common cross-lingual Wav2Vec 2.0 XLS-R model [36] instead
of using the acoustic model from Kaldi, following recent litera-
ture [12]. We slightly modify the architecture by attaching the
linear phone prediction head to the convolutional layer, not the
transformer layer, to avoid extensive computational overhead
and preserve the phonetic characteristics in convolutional fea-
tures [37]. Also, the loss function is simplified by removing the
adaptive pooling, where we observed that the final performance
difference was negligible. AdamW optimizer [38] is used with
the default learning rate of 0.001 for three epochs. As we only
trained the linear prediction head, the final performance was not
sensitive to other hyperparameters. Refer to [12] and our source
code1 for more details.
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Table 1: Kendall’s rank coefficient between GoP & intelligibil-
ity severity levels. A higher absolute value indicates a stronger
correlation between the two variables.

Method Norm. Scoring Func. English Korean Tamil

Baseline
None GMM [18, 39] -0.2049 -0.5237 -0.3571
None NN [21] -0.1536 -0.4687 -0.4003
Prior DNN-GoP [21] -0.1836 -0.4237 -0.4681

Proposed

None

Entropy -0.1831 -0.2643 -0.3251
Margin -0.1628 -0.4434 -0.4445

MaxLogit -0.2164 -0.5440 -0.5786
LogitMargin -0.1732 -0.4753 -0.5158

Scale

Entropy -0.1755 -0.1974 -0.2263
Margin -0.1260 -0.4444 -0.4210

MaxLogit -0.2164 -0.5440 -0.5786
LogitMargin -0.1732 -0.4753 -0.5158

Prior

Entropy -0.1833 -0.2645 -0.3254
Margin -0.1630 -0.4432 -0.4447

MaxLogit -0.2165 -0.5442 -0.5788
LogitMargin -0.1733 -0.4753 -0.5160

3.2.2. Baselines

Three baseline experiments are conducted: GMM-GoP [18],
NN-GoP [21], and DNN-GoP. We compare the baselines with
the UQ methods introduced in Section 2.2 and Section 2.3 by
using the same phoneme probabilities. As we aim to see the
correlations between GoP scores (continuous) and intelligibility
scores (ordinal), we utilize0 the Kendall Rank Coefficient τ to
compare the performances. Kendall’s τ measures the strength
of the relationships, with a higher absolute coefficient indicating
higher correlations between the two variables.

4. Experimental results
4.1. Correlation between GoPs and intelligilbity scores

Table 1 demonstrates the performances of both baseline and
proposed experiments, with the best performance indicated in
bold. GoP with prior normalized MaxLogit perform the best
on all the languages among the baselines and the UQ methods,
achieving −21.65%, −54.42%, −57.88% correlation, for En-
glish, Korean, and Tamil, respectively.

The results of the baseline experiments show that GMM-
GoP has the highest correlation for English and Korean at
−20.49% and −52.37%, respectively, while DNN-GoP per-
forms best for Tamil with a correlation of −46.81%. For
the proposed experiments, GoP without normalization gener-
ally shows lower performance than the baseline, except for
MaxLogit-based GoP. Additionally, while scaling normaliza-
tion has minimal impact, prior normalization has a positive
effect on GoP performance for all languages. Furthermore,
when entropy-based, probability-based (Margin), and logit-
based (MaxLogit, LogitMargin) GoP variants are compared, the
logit-based GoPs show the highest correlations to the intelligi-
bility scores. Additionally, performances on English are notably
lower than that of Tamil and Korean. We suspect that automati-
cally generated alignment causes the degradation to occur [40],
for the severe cases where alignment becomes much more chal-
lenging. We aim to mitigate this issue in our future work.

4.2. Analysis on phonemes

Figure 3 illustrates the GoP distribution between two Korean
phonemes /i/ and /m/. While the distribution of /i/ differs sig-
nificantly, the distribution of /m/ is similar across all severity
levels. This finding suggests that certain phonemes have more
impact power for severity levels based on speech intelligibil-
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Figure 3: Kendall’s τ distributions for two phonemes by sever-
ity. 0:healthy, 1:mild, 2:mild-to-mod., 3:mod.-to-sev., 4:severe.

ity, which is consistent with previous findings [17]. Identifying
which phoneme pronunciation scores highly correlate to speech
intelligibility can be useful in diagnosis and treatment planning.

We conducted a quantitative analysis on which phoneme
scores highly correlate to speech intelligibility by languages.
Kendall’s τ is calculated for each phoneme between our best-
performing Prior+MaxLogit GoP score and the intelligibility
scores. The top-5 phonemes based on correlation are as follows-
English: /aI/,/S/,/aU/,/z/,/Ã/; Korean:/i/,/s/,/n/,/a/,/2/;
Tamil:/ù/,/h/,/Ù/,/z/,/aI/. In summary, fricative sounds
(/s/,/ù/,/S/,/z/) strongly correlate to speech intelligibility
across languages, consistent with the previous results [41]. Af-
fricates (/Ù/,/Ã/) and diphthongs (/aI/,/aU/) are shared as the
top-5 phoneme list for English and Tamil. This can be ex-
plained by the complexity in the articulation of affricates and
diphthongs leading to difficulties in correct pronunciation for
speakers with lower speech intelligibility. On the other hand,
Korean show higher correlations for nasal (/n/) and monoph-
thongs (/a/,/i/,/2/). This may be again related to the move-
ment of the articulators, such as the tongue, velum, and jaw. We
additionally provide the correlation scores of all the phonemes
in our repository.1

5. Conclusion

This paper proposes an improved GoP for dysarthria speech in-
telligibility assessment by using UQ methods. Expected to al-
leviate the problem of modern NN’s overconfidence, especially
for disordered speech, tested UQ methods include (1) normal-
ization of phoneme prediction and (2) modification of the scor-
ing function. The experiments were carried out on dysarthric
speech datasets in English, Korean, and Tamil. According to
the experimental results, the prior normalized MaxLogit GoP
showed the best performance, outperforming both the tradi-
tional GoPs and other proposed GoP variants. Furthermore, to
verify the usefulness of our proposed method, an analysis of
which phoneme pronunciation scores highly correlate to speech
intelligibility was conducted.
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[6] Y. Liu, N. Penttilä, T. Ihalainen, J. Lintula, R. Convey, and
O. Räsänen, “Language-independent approach for automatic
computation of vowel articulation features in dysarthric speech
assessment,” TASLP, vol. 29, pp. 2228–2243, 2021.

[7] J. C. Vásquez-Correa, J. Orozco-Arroyave, T. Bocklet, and
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J. R. Orozco-Arroyave, “Common phone: A multilingual dataset
for robust acoustic modelling,” arXiv preprint arXiv:2201.05912,
2022.

[30] G. Zhao, S. Sonsaat, A. Silpachai, I. Lucic, E. Chukharev-
Hudilainen, J. Levis, and R. Gutierrez-Osuna, “L2-arctic: A non-
native english speech corpus.” in Interspeech, 2018.

[31] H. Kim, M. Hasegawa-Johnson, A. Perlman, J. Gunderson, T. S.
Huang, K. Watkin, and S. Frame, “Dysarthric speech database
for universal access research,” in Ninth Annual Conference of the
International Speech Communication Association, 2008.

[32] D.-L. Choi, B.-W. Kim, Y.-W. Kim, Y.-J. Lee, Y. Um, and
M. Chung, “Dysarthric speech database for development of qolt
software technology.” in LREC, 2012, pp. 3378–3381.

[33] M. TA, T. Nagarajan, and P. Vijayalakshmi, “Dysarthric speech
corpus in tamil for rehabilitation research,” in Region TENCON.
IEEE, 2016, pp. 2610–2613.

[34] P. Enderby, “Frenchay dysarthria assessment,” British Journal of
Disorders of Communication, 1980.

[35] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Son-
deregger, “Montreal forced aligner: Trainable text-speech align-
ment using kaldi.” in Interspeech, 2017, pp. 498–502.

[36] A. Babu, C. Wang, A. Tjandra, K. Lakhotia, Q. Xu, N. Goyal,
K. Singh, P. von Platen, Y. Saraf, J. Pino, A. Baevski, A. Con-
neau, and M. Auli, “XLS-R: self-supervised cross-lingual speech
representation learning at scale,” in Interspeech, 2022.

[37] K. Choi and E. J. Yeo, “Opening the black box of wav2vec feature
encoder,” arXiv preprint arXiv:2210.15386, 2022.

[38] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” in ICLR, 2019.

[39] J. Zhang, “Gmm-based gop (goodness of pronunciation) using
kaldi.” https://github.com/jimbozhang/kaldi-gop, 2020.

[40] V. C. Mathad, T. J. Mahr, N. Scherer, K. Chapman, K. C. Hustad,
J. Liss, and V. Berisha, “The impact of forced-alignment errors
on automatic pronunciation evaluation.” in Interspeech, 2021, pp.
1922–1926.

[41] A. Hernandez, H.-y. Lee, and M. Chung, “Acoustic analysis of
fricatives in dysarthric speakers with cerebral palsy,” Phonetics
and Speech Sciences, vol. 11, no. 3, pp. 23–29, 2019.

170


