INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

I Learned Error, I Can Fix It! : A Detector-Corrector Structure for ASR Error
Calibration

Heui-Yeen Yeen*, Min-Ju Kim*, Myoung-Wan Koo

Sogang University, Korea

yeen2l4@sogang.ac.kr,

Abstract

Speech recognition technology has improved recently. How-
ever, in the context of spoken language understanding (SLU),
containing automatic speech recognition (ASR) errors causes
significant downstream performance degradation. To address
this issue, various ASR error correction methodologies have
been proposed. ASR error correction mainly focuses on cor-
recting and generating only the error span using a conditional
decoding method. To this end, we propose a structure with a
Detector that uses collaborative training to predict various error
patterns and a Corrector that corrects the detected error span by
Detector. This pipeline reduces Word Error Rate (WER) and
shows less performance degradation in downstream tasks com-
pared with the original ASR hypotheses. In addition, it was
shown that it could be generalized to various downstream data.
By leveraging this Detector-Corrector pipeline, we expect to
achieve effective ASR error correction and enable high-quality
SLU downstream tasks.

Index Terms: error correction, Spoken language Understand-
ing, intent classification, emotion recognition.

1. Introduction

Pipeline-based deep learning methods for spoken language un-
derstanding (SLU) tasks have driven the growth of the spoken
dialogue system. In the pipeline-based system, the performance
of the Automatic Speech Recognition (ASR) module is essen-
tial. This is because errors from the ASR module can prop-
agate to the natural language understanding (NLU) module in
the back end, which can eventually lead to performance degra-
dation for SLU downstream tasks. Pre-trained language models
used in NLU tasks are trained on the clean text so that receiving
ASR output with error tokens at the inference state can cause
significant performance degradation[1]. This is because clean
text distribution differs from ASR result data. Therefore, ASR
error correction is a method to prevent performance degradation
by correcting the error of the ASR hypotheses and making it as
close to clean text as possible. However, it is a challenging task
to eliminate ASR errors, which encourages several methods to
prevent downstream performance degradation

Therefore, previous studies address these issues by ASR
error adaptive training on the NLU module [2], or correcting
errors using speech information(lattice graph, N-best hypothe-
ses) together [3, 4], these methods have shown improved per-
formance for downstream tasks. In addition, a generalized cal-
ibration technique that can respond to error patterns for various
recognizers is needed, rather than detecting error patterns for
specific recognizers.
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Gold truth she sent me the pages in question

ASR result she said that the page is in question
4

Detector output 01101100
L 4

Corrector input she <extra_id_0> the <extra_id_1> in question
3

Corrector output she sent me the pages in question

Figure 1: An example of the calibration process of the ASR error
calibrator. ASR result goes into Detector input. In the Detector
output, 0 represents a clean span, and 1 represents a span that
contains an error. At this time, the span predicted as 1 is masked
with the special token of the TS5 model. After that, Corrector
generates an masked span.

We develop the idea from previous research and remain-
ing issues for correcting ASR errors with a Detector-Corrector
structure. The Detector comprises a generator and discrimina-
tor. The generator generates various error patterns as an error
simulator, while the discriminator is trained to predict which
part is the ASR error. This allows the discriminator to be gen-
eralized to the performance of detecting errors. In actual in-
ference, as shown in figure 1, when the ASR result is input,
the span containing the error is masked based on the predicted
result from the Detector. The masked sentence becomes the in-
put of the Corrector again and is generated by correcting only
the corresponding span. This not only reduces inference time
compared to the methodology of generating the entire text for
correcting process but also improves the performance of correc-
tion much more by correcting only the part in error[5, 6]. The
main contributions of this study are as follows.

* We present a novel ASR error calibrator of the Detector-
Corrector structure . The experiments show that perfor-
mance improves by combining the error calibrator proposed
in the pipeline SLU task. WER result and downstream result.

It showed good generalization performance for various cor-
pus and recognition results through the Detector structure of
the collaborative learning method of simulating errors and
detecting errors. In addition, the Corrector shortened the in-
ference time by enabling only the error span to be created
through the conditional decoding method.

"https://github.com/yeonheuiyeon/Detector_
Corrector_SLU
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2. Related work
2.1. ASR correction

The ASR correction task should be corrected appropriately by
finding only the span where the error occurred. Therefore,
an ASR correction in the existing studies model that com-
bines encoding and decoding processes for spans needs to be
modified[7, 8]. [9] shows good performance in Grammar Er-
ror Correction, which corrects only the parts corresponding to
incorrect grammar. It suggests that the encoder uses a pointer
mechanism to predict DELETE and KEEP for each token and
reorder. Then, it generates only the parts that the decoder should
edit. Similarly, the encoder predicted where the error occurred
so that the decoder could generate only this span and produce
a final result[10]. In factual error correction, a pipeline method
that predicts a specific part to be corrected, then masking and
correcting has also been proposed[11, 12]. In this paper, in-
spired by these methods, we apply a partial decoding method to
the span where the error occurred.

2.2. Simulating error for training SLU

However, the above methodology may overfit error patterns for
a specific Speech recognizer. Therefore, the method of building
simulators that generate errors in various ways and conducting
training with augmented corpus by error simulators has been
proposed[13, 14, 15]. Still, this method has similar patterns
generated according to the simulation conditions and has lim-
itations in extending to various error patterns. To address this
problem, we utilized the collaborative training methodology for
training the Detector. ELECTRA [16] has shown better perfor-
mance in various tasks than the existing BERT through an ad-
versarial training structure in which the generator fills masked
tokens, and the discriminator learns replaced token detection.
Therefore, we use this structure similarly to enable collabora-
tive learning for the generator and discriminator. Specifically,
the generator simulates an ASR error, and the discriminator
distinguishes the token from the generator in which the error
occurred. With this structure, the model itself, rather than a
specific condition, can generate various error patterns.

3. Approach

We propose Detector-Corrector ASR error calibrator, which
has advantages for calibrating error in general tasks. The De-
tector consists of a generator and a discriminator following the
structure of the ELECTRA model. The generator is trained to
reproduce the error by masking the part where the error oc-
curred. It is trained as a speech error pattern simulator, and the
discriminator detects error tokens based on the result generated
by the generator. After that, using the result of Detector, the TS
[17] Corrector properly generates only the tokens that need to
be modified.

3.1. Preprocessing

At the training, Corrector and Detector both receive an ASR hy-
potheses with a masking part where error occurred as input. To
produce this input, preprocessing was performed using ground
truth sentence G7" and ASR sentence X. First, alignment was
conducted based on the Levenshtein distance for the ground
truth and ASR sentences. We used the standard Levenshtein
method proposed by [18]. At this time, substitution, insertion,
deletion, and correction are calculated for each word. There-
fore, for the tokenized input X = {zo,z1,22,...,Tn}, label
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L = {yo,y1,¥2,-..,Yyn} is created. The tokens that need mod-
ification is assigned to label 1(substitution, insertion, or dele-
tion), and the token that does not need modification is assigned
to label 0. As an input of Detector and Corrector, Tokens with
label 1 are masked.

3.2. Detector

The Detector consists of generator G and discriminator
D. They both have transformer encoder structures and are
trained together as the generator simulates error, and the
discriminator distinguishes error tokens. The training pro-
cess of Detector is as follows. The input sentence X =
{zo,x1,T2,...,2,} are entered to Detector with label L =
{40, 91,2, ,Yn}. If the value of the t'" label of L is
1, it means that the ¢ token of X is an error token. We
masked all error tokens of X with predefined mask special
token X,ng = {zo,[MASK],[MASK],...,z,} and get
contextualized vector representations h(z) = {h1,...,hm}.
Next, the generator predicts the probability for a particular to-
ken through the softmax layer to generate the token for the
masked location. Finally, the generator produce sentence X, =
{0, 21, @2, ..., zn} which is filled mask token. The generator
is trained using a masked language modeling (MLM) method,
and the objective function is as follows:

Lyryv =E <Z
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However, our proposed method differs from the conventional
method, as it masks tokens where the error occurred instead of
randomly masking a certain percentage of tokens. Also, since
the input includes ASR error types from various speech recog-
nizers, the generator learns and generates various error patterns.

The discriminator takes generated sentence X, as input
and is trained to distinguish the error token. The discriminator
makes an output through the sigmoid layer, predicting whether
each token contains an error or not. Finally, error predicted la-
bel L = {yo,%1,Y2,-..,%n} is produced. The discriminator
loss £4;sc is trained with binary cross-entropy loss, which is the
real label is L and the predicted label is L.

To detect error token efficiently, generator and discrimina-
tor jointly train, and the training objective of Detector architec-
ture is as shown below:

L="Llyurnm + X Laise

At the training stage, the Detector is trained to minimize the
loss. In inference, only a trained discriminator is used to predict
which token contains an error.

3.3. Corrector

The Corrector is a module that fills mask tokens to cor-
rect ASR errors. The original ASR hypotheses input X =
{zo,z1,x2,...,2n} with label L = {yo,y1,y2,.-,Yn}
is converted to the masked ASR hypotheses input X,,. =
{zo, < extra_id 0 >, x2, < extra_id_1 >, ...z} } where error
tokens are masked. < extra-id_i >(0 <= i <= n) means a
predefined span masking special token. One masking token can
be filled with 0 to n (n is maz_seq_len) tokens, as following
conventional TS training style.

The Corrector takes original ASR hypotheses X and
masked hypotheses X, to refer ASR hypotheses spans when
generates calibrated output sentence. In particular, when the
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Figure 2: ASR error calibrator of the Detector-Corrector structure. The figure on the left is the training process of each Detector and
Corrector part, and the picture on the right is an example of actual inference using each trained part.

first span is masked since there is no context, the probability
of the decoder generating the correct span is reduced. Then
the entered input values are converted to hidden embedding
9(@) ={g91,...,gm}.

The decoder learns to generate the masking token of the
masked ASR hypotheses in the error-corrected form, the form
of ground truth text GT, by referring to the original ASR hy-
potheses for this hidden representation. The objective uses
cross-entropy loss, which is span MLM loss, in the same way
as proposed in [17]. This means that the model reconstructs
the mask token into consecutive spans. Therefore, the model is
trained in the direction where the loss below is minimized.

During inference, the error token predicted by the discrimi-
nator is masked and goes into the input. As in the case of learn-
ing, it refers to the original hypotheses and fills in the clean
form with the ASR error corrected for what the masking span
will be. Figure 2 shows the proposed architecture at training
and inference stage.

4. Experiment
4.1. Model Training Details

For model training, the Detector was initialized with
ELECTRA-base [16] and the Corrector with T5-base, respec-
tively. We used LibriSpeech(train-clean-100), and ATIS [19]
data for training as described in Table 1. LibriSpeech is speech
data and consists of relatively long utterances, averaging 34
words. However, ATIS is text data with a shorter utterance,
averaging 11 words. We made ATIS speech data using TTS?
engine as conducted in [10].

To get the ASR hypotheses, we used three types of speech
recognizers: conformer [20], google *, and whisper [21]. The
model learned various error patterns from these three speech
recognizers using three types of ASR hypotheses. Hence, the

2https://espnet.github.io/espnet/notebook/
espnet2_tts_realtime_demo.html

3https://www.google.com/int1l/en/chrome/demos/
speech.html
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Dataset | Train | Valid | Test
Data for calibration
LibriSpeech 28,539
+ATIS train +3,867 2,703 2,620
Downstream task
SLURP 24,198 4,173 6,281
IEMOCAP 4,416 - 1,065

Table 1: Statistics of the downstream datasets.

final number of training data which consists of three types of
ASR output is a total of 97,218 pieces.

At the training stage, the Detector and Corrector were
trained separately. The Hyperparameters for training are as
follows: The Detector was trained with the learning rate Se-
5, optimizer Adam, batch size 32, and max seq length 128.
The Corrector was trained with the learning rate le-4, Adam
optimizer[22], batch size 64, max sequence length512, and max
target length512. The GPU used for training is NVIDIA RTX
A5000 24G.

4.2. Evaluation
4.2.1. Task Description

To evaluate the performance of the proposed methodology, we
describe the performance of two tasks: Emotion Recognition
and Intent Classification. Table 1 describes statistics for each
downstream task dataset.

* Emotion Recognition (ER): The emotion recognition multi-
label classification task using the IEmocap speech dataset
[23]. This dataset consists of a total of 5 sessions. We used
session 1 for the test set and the remaining sessions as a train
set.

e Intent Classification (IC): The intent classification multi-
label classification task using the SLURP speech dataset [24].
The dataset has different types: recording type in a headset or
general environment and TTS synthesis type. We used only
the recorded data with a headset.



Data IC ER Avg
type Time
WER | ACC | WER | ACC
Clean - 872 - 67.4 -
ASRresult | 30.7 | 749 | 31.11 | 653 .
Calibrate Method

T5 245 | 735 | 253 | 628 | 0.15
Const- 482 | 628 | 264 | 373 | 001
Decoder

Ours 31,1 | 779 | 272 | 654 | 0.11

Table 2: Based on the language model (ELECTRA) pre-trained
in clean text, fine-tuning is performed with clean text, ASR re-
sult, and corrected text, and performance is measured. The Avg
time of the last column is the average of inference time cost in
seconds (s) for single data.

Model | WER | F1 score
Train data
Google only [ 6.9 [ 63.1
Unseen data

A 22.8 88.4
B 23.5 68.9
C 23.2 84.1
Unseen data Avg 23 80

Table 3: Detector’s ASR error detection performance at unseen
recognizer learned only from Google ASR results.

4.2.2. Metrics

Word Error Rate(WER) is used to compare the calibration per-
formance for each speech recognizer. For downstream tasks, we
employ an accuracy score. The three best performances were
extracted from epochs between 1-10 and averaged. In addition,
this process was repeated in three different seeds, and We finally
averaged these results and reported them.

4.2.3. Calibrate Method

We compared our proposed method with previous ASR error
correction methods.

e T5: Itis a TS model based on the seq2seq structure. The ASR
result is learned to correct the output as an input. This model
obtains the ASR result as an input, and the output will be a
corrected sentence.

¢ ConstDecoder: This model also consists of an encoder and
a decoder. The encoder learns if a token should be kept,
deleted, or changed. Next, the decoder does restrict decoding
to part of the input sequence embeddings (predicted as the
changed tokens)[10].

4.3. Result

Table 2 shows the results of fine-tuning the pre-trained vanilla
ELECTRA model on downstream tasks. In the first row, the
case of fine-tuning and inference with clean text is reported as
the baseline. Also, the second row shows the result of fine-
tuning and inference with whisper’s ASR hypotheses. In the
calibrate method part, we report the results of fine-tuning and
inference with corrected hypotheses based on whisper speech
recognition results to consider difficulties in getting the golden
truth text of audio data in the real world.

Three calibration methods were trained with the same
dataset for a fair comparison. Table 2 shows our proposed
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method achieves high accuracy in terms of downstream tasks
compared with other calibrate methods. T5 calibrated, which
uses the seq2seq method for calibration, declines WER the
most, but shows the lowest accuracy score. In contrast, our
proposed method has slightly increased WER in the IC task,
but it seems well-corrected errors that are critical contextual
parts during fine-tuning. Also, when comparing the inference
time, the time was shortened compared to the T5 model despite
pipeline structures. In addition, ConstDecoder has significant
performance degradation, especially when the downstream cor-
pus are different from the trained corpus. It shows there can be
an over-fitting problem on a specific recognizer or corpus.

To confirm whether our proposed model is robust to new
error patterns that are unseen in training data, a further experi-
ment was conducted. We trained our model using only google
speech recognizer’s ASR output of calibration training data and
measured the performance of in- and out-of- domain. Table 3
describes the WER and error detecting F1 score of the google
ASR hypotheses and three unseen ASR hypotheses. A is an
ASR model provided as the ASR baseline in SUPERB. B® and
C® is an ASR model provided by espnet. The results show that
even though our proposed method is trained on a limited corpus,
it achieves high error detection scores. It means our proposed
method can be generalized to the out-of-domain ASR hypothe-
ses. This is because the generator in Detector works as an error
simulator, and the discriminator can learn various error exam-
ples.

5. Conclusions

This paper proposes an ASR error calibrator with a Detector-
Corrector structure. The Detector in the proposed model un-
dergoes collaborative training, with the generator simulating the
ASR error pattern and the discriminator distinguishing the er-
ror tokens. The Corrector is trained to fill the masking span
with the corrected form. Since it is a pipeline structure, there
can be a limitation on our proposed method that the correc-
tor cannot calibrate errors if the detector does not detect it.
However, the experiments showed that our method’s novelty,
having performance improved. It was confirmed that the ASR
WER decreased when the calibrator proposed in this paper was
used. In addition, experiments showed that downstream tasks
are improved when the proposed calibrator is used for Emotion
Recognition and Intent Classification tasks. Although the pro-
posed pipeline structure was trained with limited speech recog-
nizer error patterns and corpus, it showed the generalized per-
formance to out-of-domain. Finally, the proposed calibrator is
applied to all pipeline SLU tasks, and the performance can be
improved.
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