
Fake the Real: Backdoor Attack on Deep Speech Classification via Voice
Conversion

Zhe Ye1,2, Terui Mao3, Li Dong1,2, Diqun Yan1,2,∗

1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China
2Zhejiang Key Laboratory of Mobile Network Application Technology, China

3Ningbo City College of Vocational Technology, Ningbo, China
{2111082400, 1911082213, dongli, yandiqun}@nbu.edu.cn

Abstract
Deep speech classification has achieved tremendous success
and greatly promoted the emergence of many real-world ap-
plications. However, backdoor attacks present a new security
threat to it, particularly with untrustworthy third-party plat-
forms, as pre-defined triggers set by the attacker can activate the
backdoor. Most of the triggers in existing speech backdoor at-
tacks are sample-agnostic, and even if the triggers are designed
to be unnoticeable, they can still be audible. This work ex-
plores a backdoor attack that utilizes sample-specific triggers
based on voice conversion. Specifically, we adopt a pre-trained
voice conversion model to generate the trigger, ensuring that
the poisoned samples does not introduce any additional audi-
ble noise. Extensive experiments on two speech classification
tasks demonstrate the effectiveness of our attack. Furthermore,
we analyzed the specific scenarios that activated the proposed
backdoor and verified its resistance against fine-tuning.
Index Terms: DNNs, backdoor attacks, voice conversion,
speaker recognition, speech command recognition

1. Introduction
Recently, Deep Neural Networks (DNNs) have undergone sig-
nificant development, particularly in speech-related tasks. They
have achieved state-of-the-art performance in various areas such
as automatic speech recognition [1, 2], speaker recognition
[3, 4], and text-to-speech [5, 6]. Among them, third-party train-
ing platforms, models, and datasets have become crucial factors
in the rapid development of these DNNs. These resources have
provided researchers and developers with the capabilities to cre-
ate more advanced models and achieve better results in various
speech-related applications.

Backdoor attacks, which establish a mapping between tar-
get labels and poisoned samples exhibiting trigger behaviors,
pose a major security threat to DNNs. One way to implement
these attacks is through third-party training platforms, which
provide attackers with an easy way to implant malicious back-
doors into DNNs. Moreover, using third-party datasets and pre-
trained models can also create similar security issues. Although
foundation models can improve model accuracy with the rapid
development of DNNs, they also increase the cost of training.
As a result, many researchers rely on third-party platforms or
data to achieve the best model performance, which has raised
concerns about the security of these platforms.

Numerous backdoor attacks have been proposed for vari-
ous deep learning models. The threat of backdoors was first
highlighted by Gu et al. [7], who introduced the BadNets.
While many noteworthy works [8–12] have been published,
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Figure 1: The illustration depicts the recognition of ”Right”
and ”Go” as ”Stop”.

most of them focus on computer vision tasks. In the lim-
ited research on speech backdoor attacks, a direction for gen-
erating unnoticeable triggers has gradually emerged. Koffas
et al. [13] explored the injection of inaudible ultrasonic trig-
gers into automatic speech recognition systems. Shi et al. [14]
used natural bird sounds as unnoticeable triggers and explored
position-independent, unnoticeable, and robust backdoor at-
tacks in the audio domain. Liu et al. [15] proposed a dual-
adaptive backdoor augmentation method to launch opportunis-
tic attacks, where the backdoor triggers are ambient noise in a
daily context. Koffas et al. [16] demonstrated the feasibility of
stylistic backdoor attacks in the audio domain through electric
guitar effects. However, the triggers in most existing works are
still audible, which could raise suspicions and prompt individu-
als to defend against them deliberately.

This paper gives a new perspective on speech backdoor at-
tacks1. Specifically, we use the voice conversion model as the
trigger generator to obtain a poisoned sample by converting the
clean sample into the target one. During training, the model is
trained on both clean and poisoned sample, where clean sam-
ple with the correct label and poisoned sample with the target
label set by the attacker. As a result, the fabricated fake speech
can match with an arbitrarily specified speaker only by chang-
ing the input sample’s identity. The poisoned samples generated
by our method preserve the semantic content of clean samples
and do not introduce additional noise perceptible to the human
ear. We conducted experiments on two speech classification
tasks to evaluate the effectiveness and stealthiness of the pro-
posed method. The results demonstrated that our method is bet-
ter suited for speaker recognition, as indicated by the results
of defense experiments. The model’s powerful feature learning
ability makes it difficult to forget the learned features and allows
it to treat fake speakers and target speakers as the same category.
Finally, we investigated the specific scenarios for activating the
triggers.

1Note that there is a concurrent research [17] also employed voice
conversion for conducting the backdoor attack, although with different
motivations.
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Figure 2: The proposed attack framework consists of multiple stages. In the trigger generation stage, the attacker uses voice conversion
to transform p% of clean samples into the target speaker’s voice, forming poisoned samples. The blue horn indicates that the speech
has undergone the specified voice conversion. In the training stage, the attacker modifies the labels of the poisoned samples to the
attacker-specified label, then blends them with the remaining clean samples to generate the backdoor dataset for training the victim
model. The red speaker X represents the attacker-specified label. In the inference stage, the attacker can activate the backdoor by voice
conversion to the target speaker, leading the model to predict the attacker-specified one. Meanwhile, the clean samples will still be
correctly classified as ground-truth labels.

2. Background
2.1. Backdoor Attack

Backdoor attacks [18, 19] aim to make the victim model asso-
ciate pre-defined triggers with specific target labels. Whenever
a trigger appears in the sample, the backdoor is activated to in-
duce the model to predict an incorrect output. Backdoor at-
tacks can be classified into dirty-label and clean-label, depend-
ing on the implementation method. Dirty-label attacks mod-
ify the training samples and set the corresponding labels as the
target label. In contrast, clean-label attacks do not replace the
corresponding labels. Additionally, the backdoor trigger can be
categorized into sample-specific and sample-agnostic based on
the trigger type [20]. Sample-specific trigger indicates that each
poisoned sample has its own trigger, while sample-agnostic trig-
gers share the same trigger for all the poisoned samples.

2.2. Voice Conversion

Voice conversion [21, 22] is a technique that transforms the
identity, prosody, and emotion of the source speaker to that of
the target one while maintaining the original linguistic content.
To achieve the effect of voice conversion, it is typically neces-
sary to employ a deep learning model to extract the features
from the speech signal and map them to the sound space of
the target speaker. This technique can be applied in many as-
pects, such as privacy protection, emotion conversion, speech
enhancement, etc.

3. Methodology
3.1. Threat Model

Due to bottlenecks in data and computational resources, lots of
deep learning researchers are outsourcing the model training to
MLaaS providers or using their deep learning platforms. We
assume that the attacker is an employee of the MLaaS provider.
The attacker is unable to modify the training configurations,
such as the loss function, model structure, or batch size, and

can only access and modify the training samples and labels. The
type of attack is categorized as a poison-only attack.

Typically, an attacker has two primary objectives. Firstly,
the backdoor model trained by the attacker should correctly
classify clean sample, which is both a precondition and the key
to deceiving users. Secondly, once a pre-defined trigger ap-
pears, the model should produce the prediction outcome desired
by the attacker. For instance, as shown in Fig. 1, the backdoor
speech command recognition model would incorrectly recog-
nize the command ’go’ with the trigger as the command ’stop’.

3.2. Speech Classification Model

A classic speech classification model for speaker and speech
command recognition can be mathematically modeled as a
function Fθ(·), where θ represents the model’s parameters. The
input to this function is the speech signal, and the output is the
corresponding speech command or speaker. The following op-
timization process can learn the parameters of this model:

argmin
θ

N∑

i=1

L (Fθ (xi) , yi) , (1)

where L denotes the loss function, which is typically the cross-
entropy loss. xi and yi represent the ith speech signal and its
corresponding label in the clean training dataset, respectively.
After training, the resulting model can perform well as a classi-
fier for speaker recognition and speech command recognition.

3.3. Generate Poisoned samples and Backdoor Dataset

A commonly used method for implementing the backdoor is di-
rectly poisoning the clean dataset. Let the clean dataset with
N samples be represented as Dc = {(xi, yi) , i = 1, . . . , N}.
The attacker first selects a subset of n samples from Dc, de-
noted as Ds. In particular, p = n

N
is called the poisoning

rate. Then the triggers are added to all elements of the input
x, and the corresponding labels y are replaced with adversary-
specified label yt in Ds, resulting in a new poisoned dataset
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Dp = {(v(x, t), yt) | (x, y) ∈ Ds}, where v(x, t) is the re-
sult of voice conversion network applied to input x using target
speech t. The triggers generated by the proposed method are
not simply noise. Instead, a pre-trained network is utilized to
replace the speaker identity information, which the speech clas-
sification model can easily learn. Finally, the backdoor dataset
is constructed as follows:

Db = (Dc −Ds) ∪Dp. (2)

3.4. Framework of Poison-only Backdoor Attack

The proposed attack framework is illustrated in Fig. 2. Once
the backdoor dataset is generated using the method described
above, it is used to replace the clean training dataset. The user
then obtains the trained model through the standard training
process, which can be formulated as follows:

argmin
θ′

∑

(x,y)⊆Db

L (Fθ′ (xi) , yi) , (3)

where L denotes the loss function, Db represent backdoor
dataset, which contains clean sample x and poisoned sample
v(x).

4. Experiments and Results
4.1. Experimental Setting

Dataset and Models. In speech command recognition, we use
the Google Speech Commands v2 dataset [23]. We evaluated
the performance using two deep learning models, VGG19 [24]
and WideResNet50 [25]. Additionally, we selected two speech
datasets for speaker recognition: TIMIT [26] and VoxCeleb1
[27]. Considering the difficulty of learning from the dataset,
we use the SincNet [28] model with TIMIT, and RawNet3 [3]
with VoxCeleb1 to verify the experimental results. We split the
dataset into two non-overlapping subsets, with one subset con-
taining 90% of the data for training and the rest for testing.

Baseline and Attack Setup. We compared our attack with
an adaptive BadNets [7], which uses static triggers on the low-
est ten frequencies of the spectrogram to implement the back-
door. The poisoning rate was set to 1%. For voice conversion,
we chose FreeVC [29], a text-free one-shot voice conversion
system. We additionally selected five target speakers with IDs
3000, 6513, 652, 777, and 1993, respectively, from the dev-
clean subset of LibriSpeech [30] for backdoor activation sce-
nario experiments. The attack results were averaged over five
independent experiments.

Training Setup. All experiments were conducted using
the PyTorch framework on Nvidia RTX 3080Ti GPUs. For the
VGG19 and WRN52 models, we set the batch size of the vic-
tim model to 512 and 128, respectively. Both models use SGD
optimizer with a learning rate of 0.01, and a cross-entropy loss
function. We followed the default training settings in the Sinc-
Net [28] and RawNet3 [3] for the speaker recognition model.

Evaluation Metrics. Two metrics, Attack Success Rate
(ASR) and Benign Accuracy (BA), are utilized to evaluate the
effectiveness and stealthiness of the backdoor attack [31]. Ad-
ditionally, we use the Mean Opinion Score (MOS) to assess the
overall quality of the speech after the backdoor attack.

4.2. Effectiveness Results

As shown in Table 1, our method achieved an ASR of over 99%
in four models comparable to BadNets. It indicates that the

Table 1: The BA (%) and ASR (%) of attacks on two task
datasets.

Model VGG19 WRN52 SincNet RawNet3

Attack BA ASR BA ASR BA ASR BA ASR

Standard Training 98.01 - 98.14 - 99.77 - 92.72 -

BadNets 97.26 99.98 97.34 99.99 99.22 100 92.02 99.84

Ours 97.59 99.04 97.88 99.39 99.29 100 92.11 99.94

proposed method can successfully implant and activate back-
doors in speech classification models. Furthermore, our method
maintains a higher BA, which is no more than 1% lower than
standard training. These results demonstrate the effectiveness
of our method as a speech backdoor attack method.

�

�

�

�

�

�

MO
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Figure 3: Average MOS comparison of BadNets and our attack.

4.3. Stealthiness Result

Subjective and objective experiments were adopted to evalu-
ate the stealthiness of the backdoor speech generated from the
Voxceleb1. In the subjective experiment, 10 individuals were
invited to participate in an auditory assessment. Each person
was randomly assigned 10 clean speech samples and the corre-
sponding poisoned samples. They were asked to judge whether
the two sentences expressed the same content and whether they
sounded abnormal. The test results show that all participants
considered the content consistent, and none of the 20 speech
samples were abnormal. In the objective experiment, NISQA
[32] was used to evaluate the overall quality of the poisoned
samples. Fig. 3 shows that after BadNets attack, overall speech
quality decreases significantly. In contrast, our method achieved
better quality evaluation after the attack, attributed to the op-
timization of speech quality by voice conversion. This opti-
mization makes our poisoned samples more stealthy and able to
evade human inspection.

4.4. Ablation Study

Attack with Different Poisoning Rate. As shown in Fig. 4,
our method can achieve a high ASR even under an extremely
low poisoning rate and maintain a stable level for BA. Further-
more, it can be seen that as the poisoning rate increases, the
ASR also increases. However, when the poisoning rate reaches
a certain level, the ASR and BA do not fluctuate excessively.
Notably, our method performs better on speaker recognition.
This can be attributed to the modification of the speaker iden-
tity information, which allows the model to learn the correlation
between the fake speaker and the target label more efficiently.
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Figure 4: Performance of our attack on four models under dif-
ferent poisoning rate.

Table 2: The ASR (%) / BA (%) of our attack with other target
labels.

Target Label yt=1 Target Label yt=2 Target Label yt=3

VGG19 RawNet3 VGG19 RawNet3 VGG19 RawNet3

98.92 / 97.45 99.98 / 92.11 98.84 / 97.51 99.94 / 92.21 98.79 / 97.56 99.97 / 92.27

Attack with Different Target Labels. Table 2 presents the
BA and ASR of our attack using different target labels (yt =
1, 2, 3), which demonstrates the effectiveness of our method
regardless of the target labels.

Table 3: The ASR (%) / BA (%) of our attack with other target
speech.

Target Speech t1 Target Speech t2 Target Speech t3

VGG19 RawNet3 VGG19 RawNet3 VGG19 RawNet3

98.61 / 97.12 99.92 / 92.07 99.21 / 97.59 99.12 / 92.42 98.42 / 97.21 99.98 / 92.01

Attack with Different Target Speech. As shown in Table
3, the effectiveness of utilizing different target speech from the
same speaker is evaluated. Although the different target speech
slightly affects the attack performance, the overall effect is still
guaranteed. The specific impact may be related to the language,
gender, quality, and other factors of the target speech.

Table 4: The ASR (%) of our attack in different scenarios. Sub-
scripts a and b represent two different sentences spoken by one
target speaker.

Target Speaker T1−a Target Speaker T2−a Target Speaker T3−a

Target Speaker T1−b 97.33 1.56 0.22

Target Speaker T2−b 1.34 99.75 0.14

Target Speaker T3−b 7.74 0 92.33

Target Speaker T4 1.04 0.89 0.07

Target Speaker T5 0 12.13 0

Speaker Clean Speech 0 0 0

4.5. Specific Scenarios to Activate the Backdoor

In this section, we discuss whether the backdoor can be ac-
tivated by speech generated from other target speech. We
conduct these experiments using RawNet3. As shown in Ta-
ble 4, we used the utterances of three target speakers, de-
noted as T1−a, T2−a, T3−a, as the target speech for the gener-
ator. Then we evaluated the results using different utterances

T1−b, T2−b, T3−b from the same three speakers respectively,
extra speech T4, T5 from two other speakers, and the target
speaker’s original speech. Our results show that utterances from
the same target speaker can also activate the pre-defined back-
door. However, using utterances from other target speakers re-
sults in poor or almost no attack effectiveness. Furthermore, it
is essential to note that the target speaker’s original speech does
not activate the backdoor. This observation clarifies the spe-
cific scenarios that can activate backdoor attacks based on voice
conversion. We will discuss how to ensure that only the target
speech set by the attacker can activate the backdoor in future
work.
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Figure 5: The resistance of our attacks to fine-tuning on the
VGG19 and RawNet3.

4.6. Resistance to Fine-tuning

Most earlier defense methods against backdoor attacks are only
suitable for the image domain [14]. In this work, we use fine-
tuning as the defense method to evaluate the resistance of the
proposed attack. The results are illustrated in Fig. 5, after fine-
tuning on completely clean data, the attack effect on the speech
command recognition model is reduced by half. However, fine-
tuning the speaker recognition model has minor effects even af-
ter 20 epochs. As previously mentioned, in speaker recognition
models, false identity information can converge with target la-
bel information more effectively. Even when retrained on clean
data, the relationship already established between the trigger
and the target label can be maintained, thereby resisting this de-
fense.

5. Conclusions
This paper proposes a novel speech backdoor attack. Inspired
by voice conversion, we generate fake speech containing the
specific speaker identity information of the target speaker. Sub-
sequently, we leverage the model to acquire the correlation be-
tween fake speech and the target label. Extensive experiments
are conducted to validate the effectiveness and stealthiness of
our method. We hope that our paper will promote further re-
search to develop more robust and reliable DNNs.
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