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Abstract
Subjective evaluations such as mean opinion scores (MOS) are
essential for evaluations of synthetic speech including auto-
matic speech quality assessment (SQA) models. In this paper,
we evaluate the confidence intervals of MOS in a listening test
and the number of required samples to achieve a certain confi-
dence interval based on various tail probability evaluation meth-
ods. The tail probability is a probability representing the sample
mean deviates greatly from the true mean. We use tail proba-
bility evaluations based on asymptotic and upper-bound-based
approaches. In our experiments about toy data and actual listen-
ing test data, we show that achieving small confidence intervals
requires huge sample volumes, and the MOS corpus for SQA
has large confidence intervals due to limited sample volumes.
We suggest adopting comparative scoring and online learning
for more reliable subjective evaluations under limited budgets
as the future direction.
Index Terms: subjective evaluation, tail probability, confidence
interval, mean opinion score, MOS

1. Introduction
The quality of synthetic speech has been improved significantly
by the advancement of deep learning. This improvement has
reached the level where some methods achieve the naturalness
of synthetic speech close to that of natural speech [1, 2, 3]. It is
expected that this trend of quality saturation of synthetic speech
is making subjective evaluations hard to distinguish qualities
with sufficient probability under limited samples [4]. Recently,
corpora collecting mean opinion scores (MOS) are proposed to
realize model-based automatic speech quality assessment [5, 6].
These MOS corpora can be used as training data for MOS
predictors, and many MOS prediction methods are proposed
[7, 8, 9, 10]. Analysis of listening test results is therefore in-
creasing its importance because of two factors: (1) the limit of
reliability of the current listening test scheme may be approach-
ing due to the quality saturation and (2) the reliability of the
MOS corpora limits the performance of the automatic quality
evaluation models.

In this paper, we evaluate the confidence intervals of MOS
in a listening test and the number of required samples to achieve
a certain confidence interval based on various tail probability
evaluation methods. The tail probability is a probability repre-
senting the sample mean deviates greatly from the true mean.
We describe tail probability evaluations based on an asymptotic
approach in Section 2.1 and the upper-bound-based approach in
Section 2.2 and summarize them in Section 2.3. In Section 3,
we apply the tail probability evaluation methods to toy data and
actual listening test data. Section 4 concludes our finding and
provides the future direction of subjective evaluation. Our con-
tributions are as follows:

• We show true confidence intervals are expected to be larger
than common confidence intervals based on the central limit
theorem due to underestimation;

• We show that achieving small confidence intervals requires
huge sample volumes that are not collectible with crowd-
sourcing;

• We show that MOS from an existing listening test corpus has
large confidence intervals that indicate systems with similar
MOS can not be ranked with sufficient probability.

2. Tail probability evaluation
In evaluations of synthetic speech, we estimate a true expecta-
tion of the quality of the synthetic speech system with a sample
mean in the form of MOS. The sample mean always contains
estimation errors because we estimate the unknown true mean
with limited samples. With a small probability, the sample mean
becomes far from the true mean. We can evaluate a probability
where the sample mean deviates greatly from the true mean,
and the probability is called tail probability. We usually report
the degree of the estimation errors of MOS with confidence in-
tervals based on the tail probability. In the following sections,
we describe asymptotic and upper-bound-based tail probability
evaluations.

2.1. Asymptotic approach

2.1.1. Central limit theorem
The central limit theorem is one of the major tail probability
evaluation methods. It is commonly used to evaluate the confi-
dence interval of MOS.

In the central limit theorem, the normalized sample mean
is converged in normal distribution at the limit of the number
of samples n. Therefore, tail probability can be evaluated with
cumulative normal distribution:

limPn→∞[

√
n(µ̂n − µ)

σ
≤ x] = Φ(x) (1)

where µ̂n is sample mean, µ is true mean, σ is true standard de-
viation, and Φ(x) =

∫ x

−∞
1√
2π

e−t2/2dt is cumulative normal
distribution.

Confidence interval ∆ can be evaluated as follows:

∆ = µ̂n − µ = Φ−1(δ/2)
σ√
n
, (2)

where δ is the error probability. One of the common values of
the error probability is 0.05, which results in a 95% confidence
interval.

The number of samples to achieve error probability δ can
be derived as follows:

n =
[
Φ−1(δ/2)

σ

∆

]2
(3)
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The evaluation of the confidence interval with normal distri-
bution requires the true standard deviation to be known. Thus,
Student’s t-distribution is usually used to calculate the confi-
dence interval instead of a normal distribution to replace the
true standard deviation with the sample standard deviation.

Φ′(x) =

∫ x

−∞

Γ( ν+1
2

)√
νπ Γ( ν

2
)

(
1 +

t2

ν

)−(ν+1)/2

dt (4)

Here, Γ is the Gamma function, and ν is a degree of freedom.
The Student’s t-distribution can represent a distribution of the
sample mean when ν = n− 1.

A problem of the central limit theorem is the low ac-
curacy of tail probability approximation when n is small.
Berry–Esseen theorem [11] indicates that there is an approx-
imation error proportional to 1/

√
n in the central limit theo-

rem. In concrete, let x be a random variable with 0 means, σ
standard deviation, and ρ third-order absolute moment, and let
Fn(x) be a cumulative distribution of normalized sample mean
of x. Then, the normal approximation error is bounded by the
following formula:

|Fn(x)− Φ(x)| ≤ Cρ

σ3
√
n
, (5)

where C is a positive constant. The approximation error of the
central limit theorem could be large when n is small because it
gets smaller only as fast as O(1/

√
n). It means that to suppress

approximation error to ϵ, it requires a large sample volume in
the order of O(1/ϵ2), where ϵ is an error value.

2.1.2. Exact Asymptotics

Exact asymptotics [12] approximates relative errors of tail prob-
ability against the number of samples n. The relative error of
the tail probability of Bernoulli samples is approximated by ex-
act asymptotics as follows:

lim
n→∞

P[µ̂n ≤ x]√
1−x
2πxn

µ
µ−x

e−nd(x,µ)

= 1. (6)

Here, d(p, q) = p log p
q
+ (1 − p) log 1−p

1−q
is KL divergence

between two Bernoulli distributions with mean p and q. Range
of x is 0 < x < µ.

Both the confidence interval and the number of samples to
achieve error probability δ do not have closed forms in exact
asymptotics. They can be derived with numerical methods such
as Newton–Raphson method. Exact asymptotics requires true
mean µ to be known.

Exact asymptotics is empirically known to provide a good
approximation of tail probability even under small n, although
it is asymptotic where n → ∞.

2.2. Upper-bound-based approach

Upper-bound-based approaches evaluate tail probability based
on inequality. Upper-bound-based methods can evaluate the
worst case of tail probability at arbitrary n.

2.2.1. Hoeffding’s inequality

Hoeffding’s inequality [13] provides the upper bound of tail
probability without knowledge of the true mean or distribution
of samples.

P[µ̂n ≤ µ−∆] ≤ e−2n∆2

P[µ̂n ≥ µ+∆] ≤ e−2n∆2

(7)

Table 1: Summary of tail probability evaluation methods.

Methods Approach Assumption Characteristics
Central Limit Asymptotic σ is known Low
Theorem accuracy
Central Limit

Asymptotic
Low

Theorem accuracy
(Student’s t)
Exact Asymptotic Bernoulli High
Asymptotics µ is known accuracy
Hoeffding’s Upper bound Loose
inequality upper bound
Chernoff

Upper bound
Bernoulli Tight

-Hoeffding’s µ is known upper bound
inequality

An upper bound of the confidence interval with error prob-
ability δ can be derived with Hoeffding’s inequality as follows:

∆ ≤

√
log 2

δ

2n
(8)

An upper bound of the number of samples required to
achieve error probability δ can be obtained as follows:

n ≤ 1

2∆2
log

2

δ
(9)

Hoeffding’s inequality has the least assumption so it can be
applied to various cases. On the other hand, the upper bound
given by Hoeffding’s inequality is loose, so it provides large
worst values.

2.2.2. Chernoff-Hoeffding’s inequality

Chernoff-Hoeffding’s inequality provides a tighter upper bound
of tail probability by assuming the Bernoulli distribution.

P[µ̂n ≤ x] ≤ e−nd(x,µ) (0 ≤ x ≤ µ)

P[µ̂n ≥ x] ≤ e−nd(x,µ) (µ ≤ x ≤ 1) (10)

Chernoff-Hoeffding’s inequality does not have a closed-
form confidence interval. Thus, a confidence interval is derived
with numerical methods such as Newton–Raphson method.

The number of samples to achieve error probability δ is
bounded by Chernoff-Hoeffding’s inequality as follows:

n ≤ 1

d(µ±∆, µ)
log

2

δ
(11)

Chernoff-Hoeffding’s inequality requires true mean µ to be
known.

2.3. Summary

Table 1 summarizes evaluation methods of tail probability. Ex-
act asymptotics is expected to approximate values close to ac-
tual tail probabilities. Hoeffding’s inequality is expected to be
reliable in real data analysis because it does not suffer from ap-
proximation errors and it does not assume distribution or knowl-
edge of true parameters.

3. Experimental evaluations
We apply the evaluation methods of tail probability to (1) toy
data where the true mean is known, and (2) actual listening test
data used for training of MOS predictors1. In the experiment
using toy data, we aim to grasp the concrete behavior of each

1Our source code is availabe at https://github.com/todalab/mos-
analysis-interspeech2023.
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evaluation method of tail probability. In the experiment using
actual listening test data, we aim to analyze the reliability of
an existing listening test result in detail based on all evaluation
methods of tail probability.

3.1. Evaluation of toy data

To compare the evaluation methods of tail probability, we evalu-
ated (1) relative errors of approximation or upper bound against
true tail probability, and (2) the relationship between confidence
intervals and the number of samples. In the experiment about
relative errors, we evaluated tail probabilities of which sample
mean of Bernoulli samples deviated less than 0.7 where the true
mean was 0.8. The relative errors were computed by taking a
ratio of approximation or upper bound against true tail prob-
ability, where the true tail probability could be derived with
cumulative binomial distribution: P[µ̂n ≤ k

n
] = Ψ(k, n, µ).

In the experiment about the relationship between confidence
intervals and the number of samples, we evaluated 95% con-
fidence interval by using δ = 0.05 error probability. We
used µ = 0.8 true mean, and we derived true standard devi-
ation based on a standard deviation of Bernoulli distribution:
σ =

√
µ(1− µ) if necessary. We derived the true confidence

interval by using an inverse of cumulative binomial distribution:
∆ = µ− k

n
= µ−Ψ−1(δ/2, n, µ)/n.

3.1.1. Results of toy data
Figure 1 shows relative errors of the tail probability evaluation
methods. The true tail probabilities are shown by a 1.0 relative
error. The central limit theorem underestimated tail probabili-
ties. This result followed Berry–Esseen theorem, in that there
was a large approximation error when n was small. The rela-
tive error of the central limit theorem, however, was not mit-
igated even if n was increased. Using Student’s t-distribution
instead of normal distribution slightly mitigated the underesti-
mation. Underestimation of tail probability is not preferable for
statistical tests because it would result in misidentifying statis-
tically insignificant as significant due to underestimation of the
confidence interval. The exact asymptotics approximated tail
probabilities with high accuracy except for extremely small n.
In addition, it did not underestimate tail probabilities. Hoeffd-
ing’s inequality and Chernoff-Hoeffding’s inequality showed
high relative errors because they were upper-bound-based meth-
ods. Chernoff-Hoeffding’s inequality had a tighter upper bound
of relative errors than Hoeffding’s inequality as expected. The
relative errors of Chernoff-Hoeffding’s inequality had higher
values than true tail probability by about

√
n. This could be

confirmed with relative differences between formulae of ex-
act asymptotics (Eq. (6)) and Chernoff-Hoeffding’s inequality
(Eq. (10)).

Figure 2 shows the number of samples to achieve a 95%
confidence interval based on tail probability evaluation meth-
ods. Note that the score range is [0, 1]. The five-grade MOS
scale is also placed at the top x-axis for speech researchers.
Ground truth confidence intervals were discrete values, and they
were not shown as a continuous line. The central limit theorem
showed smaller confidence intervals than ground truth for many
n values. The exact asymptotics showed a slightly higher con-
fidence interval than the ground truth for all n. Hoeffding’s
inequality and Chernoff-Hoeffding’s inequality showed higher
confidence intervals than ground truth. This was expected be-
cause they were upper-bound-based methods. The underesti-
mation of confidence intervals by the central limit theorem was
not preferable for the statistical test. It is therefore advisable
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Figure 1: Relative error of tail probability evaluation methods.
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Figure 2: The number of samples to achieve 95% confidence
interval based on tail probability evaluation methods. The x-
axis at the top of the figure shows a 5-grade MOS scale.

to consider that actual confidence intervals could be larger than
confidence intervals derived with the central limit theorem.

Table 2 shows concrete values of the number of samples
to achieve 95% confidence intervals shown in Fig. 2. As we
showed in Fig. 2, common confidence intervals were provided
by the central limit theorem with a risk of underestimation, and
accurate approximation of confidence intervals was provided by
the exact asymptotics, and safe confidence intervals with the
least assumption were provided by Hoeffding’s inequality. To
determine a rank between systems, there must be a difference of
twice the confidence interval in the sample mean to be signifi-
cant, because the lower limit of the confidence interval with the
upper system and the upper limit of the confidence interval with
the lower system must not be covered. In Table 2, we can see
that achieving confidence intervals less than 0.03 requires pro-
hibitive sample volumes considering the cost of crowdsourcing.
Recent advancements in the quality of synthesized speech might
have reduced the difference in MOS to the level of the limit of
the confidence interval that can be ensured with crowdsourcing.

3.2. Listening test data
In the experiment about listening test data, we evaluated confi-
dence intervals of MOS from existing listening test data based
on the tail probability evaluation methods. We used a training
set of the main task in VoiceMOS challenge [5] as listening test
data. This set consisted of five-grade MOS from 175 synthetic
speech systems. Each system contains 227 evaluations on aver-
age, with a minimum of 96 and a maximum of 288 evaluations
per system. If necessary, we substituted true parameters with
sample mean and sample standard deviation because true pa-
rameters were not known in listening tests.
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Table 2: The number of samples to achieve 95% confidence in-
terval based on tail probability evaluation methods. The ”(5-
grade MOS)” row shows the confidence interval in the 5-grade
MOS scale.

Confidence Interval 0.0025 0.0075 0.0125 0.025 0.075
(5-grade MOS) 0.01 0.03 0.05 0.1 0.3
Ground truth 100,081 11,094 3,920 1,000 120
Central limit theorem 98,341 10,927 3,934 983 109
Central limit theorem 98,344 10,899 3,936 986 112(Student’s t)
Exact Asymptotics 106,141 11,923 4,338 1,113 136
Chernoff-Hoeffding’s 189,459 21,180 7,671 1,946 228Inequality
Hoeffding’s 295,110 32,790 11,804 2,951 328Inequality

3.2.1. Results of listening test data
Figure 3 shows 95% confidence intervals of MOS based on the
tail probability evaluation methods. The systems are sorted
from high MOS to low MOS along the x-axis. The central
limit theorem showed the smallest confidence interval, and the
following methods showed larger confidence intervals in order:
central limit theorem with Student’s t-distribution, exact asymp-
totics, Chernoff-Hoeffding’s inequality, Hoeffding’s inequality.
The central limit theorem and central limit theorem with Stu-
dent’s t-distribution had almost the same confidence intervals,
so they appeared to overlap in the figure. The confidence inter-
vals of Hoeffding’s inequality showed dependency only on the
number of samples because it did not consider mean and vari-
ance. The confidence intervals from the other evaluation meth-
ods reflected mean and variances: systems with high or low
MOS showed small confidence intervals because of low vari-
ances, and systems with middle MOS showed large confidence
intervals because of high variances. The confidence intervals
from every method had a large overlap with confidence inter-
vals from adjacent systems with similar MOS, which indicated
the quality of adjacent systems could not be ranked with suffi-
cient probability.

Figure 4 shows the number of systems without significant
differences between MOS, or the number of systems included
inside the confidence interval from each system shown in Fig. 3.
The systems with middle MOS had a large number of systems
without significant differences. This was because the MOS of
many systems was concentrated in the middle range, and sys-
tems in this range had relatively large confidence intervals. It
also showed that systems with very high MOS had relatively
more systems without significant differences than systems with
very low MOS. The main reason why many systems in the
VoiceMOS challenge had such large confidence intervals and
could not determine the rank of adjacent systems was because
of the small sample size per system.

Recently, a model-based MOS prediction approach uses the
results of a listening test such as the VoiceMOS challenge as
training data. Among such methods, there are approaches that
predict MOS directly as a training target [7, 8, 10, 14]. As we
showed in our experiments, there remained a possibility that in-
dicates sample means or MOS were still distant from the true
mean due to the small sample volume. This suggested that
MOS evaluated with limited samples might not be appropriate
for training data of the automatic quality assessment models.
The similar concern was raised by metadata analysis [15].

4. Conclusions and future perspective
This paper evaluated the listening test of synthetic speech with
tail probability evaluation methods. We showed that true con-
fidence intervals were expected to be larger than confidence
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Figure 4: The number of systems included inside confidence
interval from each system from VoiceMOS challenge.

intervals based on the central limit theorem due to underesti-
mation. We showed that achieving small confidence intervals
required large sample volumes that were not collectible with
crowdsourcing. We also showed that MOS from existing lis-
tening test corpus had large confidence intervals that prevented
systems with similar MOS from being ranked with sufficient
probability.

A widely-used device for pulling out significant differences
from MOS is the biased system selection evaluated in a listen-
ing test, but it is ad hoc and makes MOS comparisons across
listening tests meaningless. As the fundamental future direc-
tion of subjective evaluation, we suggest (1) preferring compar-
ative scoring to direct scoring such as MOS, and (2) optimizing
sample assignment of listening tests with online learning. As
for (1), it is known that comparative scoring is less noisy than
direct scoring [16]. In addition, comparative scoring is recog-
nized to be faster for humans to evaluate [17]. These character-
istics of comparative scoring enable a collection of more reli-
able scores with larger samples under a limited budget. In addi-
tion, comparative scoring can avoid calibration issues of MOS
[18, 19], which enables the creation of unbiased and combinable
training corpora for the quality assessment models. As for (2),
preference-based online learning can dynamically select pairs to
be compared and optimize the total sample volume to determine
the quality of systems under specified accuracy [20]. Compar-
ative scoring has tended to be avoided due to the difficult se-
lection of systems to be compared from the large combination
of pairs. However, the ideal criteria to select direct scoring or
comparative scoring may not be the number of system combi-
nations but the relative noise level of the scoring methods [16].
Preference-based online learning may enable easy use of com-
parative scoring with guaranteed accuracy in a listening test.
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