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Abstract
In recent years, image generation has shown a great leap in
performance, where diffusion models play a central role. Al-
though generating high-quality images, such models are mainly
conditioned on textual descriptions. This begs the question:
how can we adopt such models to be conditioned on other
modalities?. In this paper, we propose a novel method utiliz-
ing latent diffusion models trained for text-to-image-generation
to generate images conditioned on audio recordings. Using a
pre-trained audio encoding model, the proposed method en-
codes audio into a new token, which can be considered as
an adaptation layer between the audio and text representa-
tions. Such a modeling paradigm requires a small number
of trainable parameters, making the proposed approach ap-
pealing for lightweight optimization. Results suggest the pro-
posed method is superior to the evaluated baseline methods,
considering objective and subjective metrics. Code and sam-
ples are available at: https://pages.cs.huji.ac.il/
adiyoss-lab/AudioToken.
Index Terms: Diffusion models, Audio-to-image.

1. Introduction
Neural generative models have changed the way we consume
digital content. From generating high-quality images [1, 2, 3],
though coherence of long spans of text [4, 5, 6], up to speech
and audio [7, 8, 9, 10]. In recent years, diffusion-based gener-
ative models have emerged as the preferred approach, showing
promising results on various tasks [11].

During the diffusion process, the model learns to map a pre-
defined noise distribution to the target data distribution. In every
step of the diffusion process, the model learns to predict the
noise at a given step to finally generate the signal from the target
distribution [12, 13, 14]. Diffusion models operate on different
forms of data representations, e.g., raw input [15, 12], latent
representations [16], etc.

When considering controllable generative models, the com-
mon practice these days is to condition the generation on a tex-
tual description of the input data; this is especially noticeable
in image generation [1, 17, 18]. Recently, several methods pro-
posed using different modalities to condition the generative pro-
cess such as image-to-audio [19, 20], image-to-speech [21, 22],
image-to-text [23, 24], or audio-to-audio [25, 26]. However,
such research direction is less explored by the community.

In this work, we focus on the task of audio-to-image gen-
eration. Given an audio sample contains an arbitrary sound, we
aim to generate a high-quality image representing the acous-
tic scene. We propose leveraging a pre-trained text-to-image
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Figure 1: Generated images (right) and input spectrograms
(left) from the proposed method. The model gets as input an
audio recording, extracts a representation, and projects into a
textual latent space which will be fed into a pre-trained text-
conditioned diffusion generative model.

generation model together with a pre-trained audio representa-
tion model to learn an adaptation layer mapping between their
outputs and inputs. Specifically, inspired by recent work on
textual-inversions [27], we propose to learn a dedicated audio-
token that maps the audio representations into an embedding
vector. Such a vector is then forwarded into the network as a
continuous representation, reflecting a new word embedding.

Several methods for generating audio from image inputs
were proposed in prior work. The authors in [28, 29] proposed
to generate images based on audio recordings using a Gener-
ative Adversarial Network (GAN) based method. Unlike the
proposed method, in [28], the authors present results for gener-
ating MNIST digits only and did not generalize to general audio
sounds. In [29], the authors did generate images from general
audio. However, this turned into low-quality images. The most
relevant related work to ours is Wav2Clip [30], in which the
authors first learn a Contrastive Language-Image Pre-Training
(CLIP) [31] like a model for audio-image pairs. Then, later on,
such representation can be used to generate images using VQ-
GAN [32] under the VQ-GAN CLIP [33] framework.

Why use audio signals as a conditioning to image gener-
ation rather than text? Although text-based generative mod-
els can generate impressive images, textual descriptions are not
naturally paired with the image, i.e., textual descriptions are
often added manually. On the other hand, when considering
videos, audio, and images capture and represent the same scene,
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Figure 2: Architecture overview: We forward an audio recording through a pre-trained audio encoder and then through an Embedder
network. A pre-trained text encoder extracts tokens created by a tokenizer and the audio token. Finally, the generative model is fed with
the concatenated tensor of representations. It is important to note that only the Embedder parameters are trained during this process.

hence are naturally paired. Moreover, audio signals can repre-
sent complex scenes and objects such as different types of the
same instrument (e.g., classic guitar, electric guitar, etc.), or dif-
ferent scenes of the same object (e.g., classic guitar recorded in
studio vs. live show). Annotating such fine-grained details of
the different objects is labor-intensive, hence hard to scale.

In summary, our contributions are: We propose a novel
method AUDIOTOKEN for audio-to-image generation by lever-
aging a pre-trained text-to-image diffusion model together with
a pre-trained audio encoder; We propose a set of evaluation
metrics specifically dedicated for the task of an audio-to-image
generation. Through extensive experiments, we show that our
method is able to generate high-quality and diverse set of im-
ages based on audio-scenes.

2. Adaptation of text-conditioned models
Diffusion models are a family of models that are prone to learn
the underlying probabilistic model of the data distribution p(x).
This is done by learning the reverse Markov process of length
T . Given a timestamp t ∈ [0, 1], the denoising function ϵθ :
Rd → Rd learns to predict a clean version of the perturbed xt

from the training distribution S = {x1, .., xm}:

LDM ≜ Ex∼S,t∼U(0,1),ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥22

]
. (1)

Empirical results showed that learning diffusion models on top
of latent spaces of autoencoders can produce results in a higher
quality than those that are trained on the raw input [16]. In-
tuitively, this process can be done on a latent representation of
encoder-decoder architecture. Latent diffusion operates on top
of a representation given by an encoder f :

LLDM ≜ Ex∼S,t∼U(0,1),ϵ∼N (0,I)

[
∥ϵ− ϵθ(f(xt), t)∥22

]
. (2)

The output of the diffusion can later be forwarded through the
decoder to obtain the raw result (e.g., audio, image, text).

An important component of modern generative models is
conditioning. This allows the generative process to be condi-
tioned on a given input, i.e., modeling p(x|y) where y is a data
entry. For example, in a text-based visual generation, the gen-
erative process is conditioned on text. There are many types of
conditioning, such as text, time, style, etc. [16]. Usually, the
conditioning component is done by an injection of a condition
representation from an encoder τ to the attention mechanism

of ϵθ . Conditioning the diffusion process yields the following
diffusion process, LCLDM ≜

E(x,y)∼S,t∼U(0,1),ϵ∼N (0,I)

[
∥ϵ− ϵθ(f(xt), t, τ(y))∥22

]
. (3)

In the following, we propose a method that leverages a con-
ditional generative model to produce high-quality and diverse
images that are based on audio-scenes.

2.1. AUDIOTOKEN

Audio signals contain information that can help us imagine the
scene that produced them. This makes it tempting to use a gen-
erative model that is conditioned on audio recordings to gener-
ate a scene. However, models that generate high-quality images
commonly rely on large-scale text-image pairs to generate im-
ages using text. We thus propose a method named AUDIOTO-
KEN that effectively projects audio signals into a textual space,
enabling us to leverage existing text-conditioned models to gen-
erate images based on audio-based tokens.

Our objective is to investigate the feasibility of directly en-
coding any audio signals into a dedicated representation that
will fit as an additional token for text-conditioning. By doing
so, we can leverage existing pre-trained models and not learn a
new generative model with audio-visual pairs. Furthermore, we
are not required to learn a new token for each individual class
of audio or type of scene (as opposed to textual inversion-based
methods [27]). Instead, we develop an audio-to-image genera-
tor capable of handling a wide range of diverse concepts.

The input to our method is a short video input (i, a), where
i represents a frame from the video and a represents its corre-
sponding audio recording. We are aiming to create a generative
process that is audio-conditioned, i.e., p(i|a). To achieve this,
we utilize a text-conditioned generative model. Thus, we need
to associate the audio signal a with the text conditioning.

The process begins with a transformer model that encodes
the initial prompt “A photo of a” into a representation etext ∈
R4×da , where da is the embedding dimension of the text input.
Afterward, we concatenate to etext, an extra latent representation
of the audio signal, denoted as eaudio ∈ Rda . We utilize an
Embedder, which is composed of a pre-trained audio encoding
network and a small projection network. This results in:

eaudio = Embedder(a). (4)

Next, we describe the Embedder network and the optimization
process of our method.
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Figure 3: Qualitative results for Wav2Clip (first row), Image-
Bind (second row), AUDIOTOKEN (third row), and the original
reference images (last row).

Audio encoding: The Embedder leverages a pre-trained audio
classification network ϕ to represent the audio. The discrimina-
tive network’s last layer is typically used for classification, and
thus it tends to diminish important audio information which is
irrelevant to the discriminative task. Thus, we take a concate-
nation of earlier layers and the last hidden layer (specifically
selecting the fourth, eighth, and twelfth layers out of a total
of twelve). This results in a temporal embedding of the audio
ϕ(a) ∈ Rd̂×na , where na is the temporal audio dimension.
Then, to learn a projection into the textual embedding space,
we forward ϕ(a) in two linear layers with a GELU function
between them:

ēaudio = W2σ(W1ϕ(a)), (5)

where W1 ∈ Rd̂×d̂,W1 ∈ Rd̂×daudio , and σ is a GELU non-
linearity [34]. Finally, we apply an attentive pooling layer [35],
reducing the temporal dimension of the audio signal, i.e.,

eaudio = Atten-Pooling(ēaudio). (6)

Optimization: During training, we update only the weights of
the linear and attentive pooling layers within the Embedder net-
work during the optimization process. The pre-trained audio
network and the generative network remain frozen. We adopt
the loss function employed by the original model LLDM (Equa-
tion 2), maintaining consistency in the training scheme. Fur-
thermore, we introduce an additional loss function that comple-
ments the original one, which involves encoding the label of the
video, denoted by l ∈ Rnl×da , where nl represents the label’s
length (e.g., the size of the ‘acoustic guitar’ label is two). The
label is encoded using the generative model’s textual encoder,

and then the spatial dimension is reduced using average pool-
ing, i.e., l̂ = Avg-Pooling(l). The classification loss is defined
as follows:

LCL =

(
1− ⟨eaudio, l̂⟩

∥eaudio∥∥l̂∥

)2

. (7)

Intuitively, this term ensures that the audio embedding remains
close to the video’s concept, facilitating faster and more stable
convergence. Finally, we also add an ℓ1 regularization to the
encoded audio token, which encourages the audio token to be
more evenly distributed. The overall loss that is optimized for
AUDIOTOKEN is given by

L = LLDM + λℓ1∥eaudio∥1. (8)

The overall loss that is optimized for AUDIOTOKEN with clas-
sification loss is given by

L = LLDM + λℓ1∥eaudio∥1 + λCLLCL. (9)

2.2. Evaluation functions

The evaluation of a visual generation from audio-scene is yet
opened. Such evaluation setup is challenging since a well-
performed model is excepted to generate images that will (i)
capture the most prominent object in the audio recording; (ii)
be semantically correlate with the input audio; and (iii) be se-
mantically similar to the “ground truth” / target image. Lastly,
we require evaluating the general quality of the generated im-
age. To mitigate that, we propose to use the following evalua-
tion functions.
Audio-Image Similarity (AIS) ideally measures the similarity
between the semantic input audio and generated image features.
We employ the Wav2CLIP model [30]. The Wav2CLIP model
enables to measure of the similarity between representations of
an audio and image pair. This allows us to quantify to which
extent the generated image describes the audio. Quantifying
only the correlation score is not telling the whole story since
the score scale may vary. Thus, it is unclear what is a good
score. Instead, we compare the similarity between a generated
image and its input audio and the similarity between the gener-
ated image and arbitrary audio from the data. The AIS score is
then averaged over all data entries in the validation set.
Image-Image Similarity (IIS) measures the semantic similar-
ity between the generated image and the “ground truth” one.
This information is crucial since it allows quantifying the se-
mantic similarity to a “ground truth” scene.

We employ the same reference-based method as in the AIS
metric. Thus, we measure the CLIP [31] score between the (i)
generated image and its “ground truth” and (ii) generated image
and an arbitrary image from the data. The IIS score is then
averaged over all data entries in the validation set.
Audio-Image Content (AIC). To account for the image con-
tent, we measure the level of agreement between the predicted
class of an image classifier and the ground-truth audio label.
However, since there might not be a complete correlation be-
tween the image classifier classes and the audio labels, an ad-
ditional CLIP-based score is employed to determine agreement.
If the CLIP-based matching score exceeds a threshold of 0.75,
the image and audio class are considered in agreement.
Fréchet Inception Distance (FID). In order to evaluate the
quality of the generated images, we adopt the standard FID
score [36]. Such reference-free metric compares the distribu-
tion of the generated images against the original images using
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Table 1: We report AIC, FID, AIS, and IIS for AUDIOTO-
KEN (with and without Classification Loss (CL)), together with
Wav2Clip. For reference, we additionally report results for the
original images (reference) and images generated by Stable Dif-
fusion (SD) with text labels.

Method Metric

AIC ↑ FID ↓ AIS ↑ IIS ↑
Reference 54.66 - - -
SD (Text) 71.28 52.85 - -

Wav2Clip [30] 29.32 99.89 47.76 51.11
ImageBind [37] 39.15 67.42 67.48 75.50
AUDIOTOKEN with CL 48.01 66.08 62.28 76.40
AUDIOTOKEN 45.48 56.65 68.23 76.66

an internal representation obtained from a pre-trained model. In
this work, we use the Inception model.
Human Evaluation. Lastly, we run a subjective test to evaluate
the adherence of the generated images to their labels. For each
method, annotators were shown a generated image and asked to
rate its relevance to a given label on a scale of 1-5.

3. Results
In the following, we study our method from objective and sub-
jective points of view. We begin by describing details regarding
the experimental setup. Then, we report results for our method
and baselines using the evaluation framework proposed in Sec-
tion 2.2. We show that our method outperforms the current
baselines. We finally subjectively evaluate and find that annota-
tors agree that our method describes the audio the best.
Baselines. Wav2Clip [30] employs a CLIP-based loss for
audio-text pairs. Then, they use this representation to gen-
erate an image from a text that is highly correlated with the
audio using VQ-GAN [32]. ImageBind [37] combines infor-
mation from six different modalities (text, image/video, audio,
depth, thermal, and inertial measurement units (IMU)) into a
single representation space. We used ImageBind’s unified la-
tent with stable-diffusion-2-1-unclip 1 to generate images from
audio samples.
Data. We use the VGGSound [38] dataset, which is derived
from a collection of YouTube videos with corresponding audio-
visual data. The dataset contains 200, 000, each in the length of
ten seconds. The dataset is also annotated with 309 classes.
Hyperparameters. The Embedder network comprises 3 lay-
ers, with attention pooling applied to a sequence of 248. For
the generative model, we use Stable Diffusion [16]. This results
in an 8, 853, 507 parameters model. During training, we ran-
domly crop five-second audio clips and select the frame with
the highest CLIP score corresponding to the VGGSound label.
We also filter out frames with inconsistent classifications from
both the image and audio classifiers. We train the model for
60, 000 steps with a learning rate of 8e-5 and batch size of 8 on
Nvidia A6000 GPU.
Objective evaluation. We start by comparing the proposed
method, with and without the Classification Loss (CL), against
Wav2Clip and ImageBind, considering FID, AIS, AIC, and IIS.
For reference, we additionally include a topline of results of
generating images directly from textual description (text labels)
using Stable Diffusion (SD). Results are reported in Table 1.

1https://github.com/Zeqiang-Lai/
Anything2Image

Figure 4: Qualitative results of speaker generation for AU-
DIOTOKEN (first row), and reference images (second row).

Results suggest that AUDIOTOKEN is superior to Wav2Clip
and ImageBind, considering all evaluation metrics. Interest-
ingly, AUDIOTOKEN also performs better when considering
the AIS metric, which leverages the Wav2Clip and ImageBind
models to obtain the similarity score. This result demonstrates
accurate audio detail identification (e.g., distinguishing vari-
ous guitars) and considers multiple entities (e.g., multiple fly-
ing planes or a single plane). As expected, using textual labels
reaches a higher accuracy and pushes the model toward learning
representation which is more discriminative but less correlated
with the target video. Generated images from all methods can
be seen in Figure 3.
Subjective evaluation. We compare AUDIOTOKEN against
Wav2Clip, and SD using textual descriptions. We randomly
sample 15 images from the test set and ask human annotators
to rank their relevance to their textual labels on a scale between
1 and 5. We enforce at least 17 annotations for each of the eval-
uated images and compute the mean score together with its stan-
dard deviations. AUDIOTOKEN outperforms Wav2Clip (4.07 ±
0.83 vs. 1.85 ± 0.46). When considering comparison to SD
using text labels, AUDIOTOKEN is reaches comparable perfor-
mance and yields slightly worse subjective scores (4.07 ± 0.83
vs. 4.58 ± 0.60). These findings are especially encouraging, as
these suggest users found the images generated by AUDIOTO-
KENto capture the main objects in the audio scene similarly to
using textual labels, which serves as a topline.
Speaker image generation. We investigate its potential to
create visuals of various speakers. We gathered samples
from two 30-minute videos per person that showcased Barack
Obama, Donald Trump, Emma Watson, and David Beckham to
achieve this goal and extracted the audio representation from X-
Vector [39]. Our results in Fig. 4 indicate that our approach ac-
curately represents Barack Obama and Donald Trump. We pos-
tulate that this could be due to their distinct voices. However,
with Emma Watson and David Beckham, the method mainly
captures their gender.

4. Conclusions
In this paper, we present a method for leveraging text-
conditioned generative models for audio-based conditioning.
Our method produces high-quality images which describe a
scene from the audio recording. In addition, we propose a com-
prehensive evaluation framework that takes into account the se-
mantics of the images generated. Our method presents a first
step toward audio-conditioned image generation. The hidden
information in the audio is richer than the observed one in the
text. Hence, we think that this problem is interesting and should
get more focus from the community.

5449



5. References
[1] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton,

S. K. S. Ghasemipour, B. K. Ayan, S. S. Mahdavi, R. G. Lopes
et al., “Photorealistic text-to-image diffusion models with deep
language understanding,” in NeurIPS.

[2] O. Gafni, A. Polyak, O. Ashual, S. Sheynin, D. Parikh, and
Y. Taigman, “Make-a-scene: Scene-based text-to-image genera-
tion with human priors,” in ECCV, 2022.

[3] H. Chang, H. Zhang, J. Barber, A. Maschinot, J. Lezama, L. Jiang,
M.-H. Yang, K. Murphy, W. T. Freeman, M. Rubinstein et al.,
“Muse: Text-to-image generation via masked generative trans-
formers,” arXiv preprint arXiv:2301.00704, 2023.

[4] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv
preprint arXiv:2302.13971, 2023.

[5] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hesslow,
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