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Abstract
Recent text-to-speech models have been requested to synthesize
natural speech from language-mixed sentences because they
are commonly used in real-world applications. However, most
models do not consider transliterated words as input. When gen-
erating speech from transliterated text, it is not always natural
to pronounce transliterated words as they are written, such as
in the case of song titles. To address this issue, we introduce
FACTSpeech, a system that can synthesize natural speech from
transliterated text while allowing users to control the pronunci-
ation between native and literal languages. Specifically, we pro-
pose a new language shift embedding to control the pronuncia-
tion of input text between native or literal pronunciation. More-
over, we leverage conditional instance normalization to improve
pronunciation while preserving the speaker identity. The exper-
imental results show that FACTSpeech generates native speech
even from the sentences of transliterated form.
Index Terms: text-to-speech, cross-lingual, accent control,
language-mixed

1. Introduction
Text-to-Speech (TTS) aims to synthesize natural speech from
input text. With the introduction of deep neural networks, the
TTS model has been significantly improved, making it possi-
ble to generate human-like speech [1, 2, 3, 4, 5, 6, 7]. Due to
the increasing usage of sentences written in two or more lan-
guages (i.e., code-mixed sentences), recent TTS models have
been expanded from monolingual TTS to multilingual TTS that
generates speeches with multiple languages by multi-speaker
(e.g., generating fluent English speech in the voice of Korean
speaker) [8, 9, 10, 11, 12].

Owing to the difficulty of getting bilingual and parallel
speech corpus [13], a lot of existing works have attempted to
construct multilingual TTS utilizing a mixture of monolingual
training data from different languages [8, 9, 10, 11]. However,
the limitation of the monolingual dataset lies in that the speaker
identity is entangled with assigned linguistic information. As a
result, preserving the speaker identity can be difficult when re-
placing the source language representation with the target lan-
guage representation. To separate speaker identity from pho-
netic representations, most of the previous works utilize domain
adversarial training [9, 11, 14, 15]. Moreover, T. Nekvinda and
O. Dusek [11] propose a meta-learning approach to predict the
language-specific weights of text encoder concurrently with do-
main adversarial training. D. Xin et al. [14] adds mutual infor-
mation minimization objective to strengthen speaker-text disen-
tanglement.

The use of language-mixed sentences can take two forms:
code-mixed or transliterated. An example of code-mixed form is

Transliteated text

The next song is pi ttam nunmul by bangtan sonyeondan.

FACTSpeech

Input text

Output speech

Pronunciation control (Black: Korean / White: English)

피 땀 눈물

pi ttam nunmul

⋮“The next song is                           by                                    .”

방탄소년단

bangtan sonyeondan

⋮

Figure 1: Overview of FACTSpeech. Our model can control pro-
nunciation between native or literal pronunciation.

”The next song is피땀눈물,” whereas an example of transliter-
ated form is ”The next song is pi ttam nunmul.” Although many
studies aim to generate natural speech from code-mixed sen-
tences, they often neglect transliterated words as input [16, 17].
However, transliterated forms are commonly used in real-world
scenarios, such as when referring to song titles or place names.

In this paper, we introduce Foreign-Accent Controllable
Transliterated Text-to-Speech (FACTSpeech), which aims to
overcome the limitations of existing methods [16, 17] that fo-
cus on synthesizing natural speech from code-mixed sentences,
without considering transliterated words as input. The main
contribution of FACTSpeech is its ability to synthesize speech
from transliterated text while controlling the pronunciation be-
tween native and literal languages. This means that native pro-
nunciation can be obtained without prior knowledge of the char-
acters of the target language from the user. To this end, we
propose transliteration-based data augmentation (TDA) to learn
transliterated transcripts, and the proposed language shift em-
bedding (LSE) enables the model to relate between languages
in the transliterated text. Moreover, we employ conditional in-
stance normalization (CIN) [18] to improve pronunciation ac-
curacy while preserving the speaker identity.

The experimental results indicate that FACTSpeech can
generate natural pronunciation with only source language text
inputs and control pronunciation between source and target
languages. The effectiveness of FACTSpeech is demonstrated
through various metrics, including subjective mean opinion
score (MOS) test, and spoken language identification (SLID).
The synthesized audio samples are presented on our demo
page1.

2. Model description
Fig. 2 depicts the network architecture of FACTSpeech. Rooted
from FastPitch [6], FACTSpeech consists of three modules: text
encoder, variance predictors, and decoder. Here, variance pre-
dictors consist of pitch, energy, and duration predictor. We uti-

1https://atozto9.github.io/demo/FACTSpeech/
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Figure 2: The model architecture of FACTSpeech. LSE refers to
language shift embedding and CIN means conditional instance
normalization. “Sinusoidal symbol” refers to the positional en-
coding. γ and β indicate learnable parameters in CIN. In our
experiments, we fixed N = 2 and M = 3.

lize a speaker lookup table for multi-speaker conditioning to
variance predictors to obtain speaker representation. We also
add CIN [18] to the decoder for native pronunciation. In the
following subsections, we will describe further details on each
module in FACTSpeech.

2.1. Text encoder

FACTSpeech takes text embedding as input. Here, the text em-
bedding input is obtained by language-dependent grapheme se-
quence and lookup table. The acquired text embedding is added
to positional encoding and LSE, then fed into the text encoder.
The text encoder generates the hidden linguistic representation
htext.

2.2. Pitch and energy predictor

Extending FastPitch [6], we employ an energy predictor [4] in
addition to a pitch predictor. Pitch/energy predictors aim to pro-
vide pitch/energy information to htext, respectively. Combined
with speaker embedding, the predictors take htext as input and
predict pitch/energy values. The pitch/energy embeddings are
obtained from the predicted values through a single 1D convo-
lutional layer. Finally, the predicted pitch/energy embeddings
are added to htext.

The pitch predictor is optimized by mean square error
(MSE) loss between the predicted and the ground truth pitch
value, which is extracted by pyin algorithm [19] as in Fast-
Pitch [6]. The ground truth energy value is computed by L2 nor-
malization from the amplitude of each mel-spectrogram frame.
Similar to the pitch predictor, the energy predictor is optimized
with MSE between the predicted and ground truth energy val-
ues. This can be formulated as follows:

Lpitch = MSE (xpitch, x̂pitch) , (1)

Lenergy = MSE (xenergy, x̂energy) , (2)

where MSE (x, x̂) = 1
T

∑T
t=1 (x(t)− x̂(t))2 , x and x̂ refer to

the ground truth and predicted value, respectively, and T repre-
sents the length of the sequence.

2.3. Duration predictor with online aligner

To match the length between linguistic and acoustic represen-
tations, we utilize the duration predictor [3, 4, 6]. Conditioning
with speaker embedding, the duration predictor takes htext as
an input and predicts the token duration. The predicted duration
is used for upsampling htext combined with pitch and energy
embeddings. We optimize the duration predictor with MSE loss
between the predicted and the ground truth duration, which can
be formulated as:

Lduration = MSE (xduration, x̂duration) , (3)

where xduration and x̂duration refer to the target and predicted du-
ration, respectively.

To extract the target duration value, we utilize the online
duration search algorithm [20, 21]. It enables the model to eas-
ily extend to other languages since it doesn’t depend on the
language-specific external aligners.

LForwardSum and Lbin are used to optimize online aligner
[20, 21]. LForwardSum is obtained through connectionist tempo-
ral classification loss [22] to maximize the likelihood of input
text S given mel-spectrogram X . Lbin makes closer soft align-
ments Asoft to hard alignments Ahard, which represents the KL-
divergence of two alignments. We can formulate LForwardSum and
Lbin as follow:

LForwardSum = − logP (S|X), (4)

Lbin = DKL(Asoft||Ahard), (5)

where Asoft is obtained by taking the softmax of the minus L2
distance of the text and mel-spectrogram representations. Two
representations are obtained by forwarding text and mel to 1D
convolutional layers. By the Viterbi algorithm, Asoft can be con-
verted to Ahard which represents the target duration. Here, we
denote Lalign = LForwardSum + Lbin for brevity.

2.4. Decoder

The decoder, which is built upon feed-forward transformer
(FFT) blocks [24, 25], takes upsampled hidden representation
h̃text as input and predicts mel-spectrogram. It is well-known
that the hidden vectors of the top layers tend to learn lan-
guage information, while the bottom layers are useful for learn-
ing speaker information [26, 27]. Motivated by this, we condi-
tion the corresponding information to our decoder through CIN,
which will be described in Sec. 3.3.

From the predicted mel-spectrogram, the mel-spectrogram
reconstruction loss is calculated. This can be formulated as:

Lmel = MSE (ymel, ŷmel) , (6)

where ymel denotes the ground truth mel-spectrogram and ŷmel

refers to the predicted mel-spectrogram.
The overall training loss is represented as follows,

Ltotal = Lmel + λpLpitch + λeLenergy + Lduration + Lalign, (7)

and the model is trained to minimize this loss. We set the hy-
perparameters λp and λe to 0.1, following the same scaling as
in FastPitch [6].

3. Multilingual TTS extension
We leverage transliteration-based data augmentation and pro-
pose LSE. Combined with the proposed LSE, transliterated data
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Table 1: MOS, SMOS, and SLID evaluation results. MOS and SMOS are presented with 95% confidence intervals. SLID is calculated
using the model of [23]. GT is the ground truth speech.

Method
Intra-lingual Cross-lingual

EN T-EN EN T-EN
MOS SMOS SLID MOS SMOS SLID MOS SMOS SLID MOS SMOS SLID

GT 4.31±0.03 3.98±0.07 98.9% - - - - - - - - -
Vocoded 4.27±0.04 3.90±0.07 98.8% - - - - - - - - -
SANE-TTS 4.03±0.06 3.78±0.07 97.7% 4.04±0.06 3.70±0.07 97.8% 3.78±0.05 3.53±0.07 91.3% 3.78±0.05 3.57±0.07 91.9%
Y. Zhang et al. 3.99±0.06 3.79±0.07 98.1% 3.98±0.06 3.78±0.07 97.9% 3.74±0.05 3.44±0.07 84.6% 3.68±0.05 3.47±0.07 85.4%
FACTSpeech 4.04±0.06 3.75±0.07 98.5% 4.04±0.06 3.72±0.07 98.3% 3.90±0.04 3.54±0.07 96.8% 3.81±0.05 3.60±0.07 95.9%

enables FACTSpeech to synthesize natural pronunciation with-
out knowledge of the target foreign language and control pro-
nunciation between source and target languages. Moreover, we
employ CIN [18] to improve pronunciation accuracy while pre-
serving the speaker identity.

3.1. Transliteration-based data augmentation

Transliteration refers to the way of mapping from scripts of the
source language to that of the target language based on their
phonetic similarity.

Although transliteration-based data augmentation enables
the model to learn the relationship between transliterated text
and the pronunciation of target languages, the synthesized
speech’s pronunciation is determined by the training data. Con-
sequently, the model lacks control over the pronunciation style
and relies solely on the input text.

To address this limitation and enable control over the pro-
nunciation style in transliterated input, we propose LSE. The
details of LSE will be described in the following subsection.

3.2. Language shift embedding

LSE is a learned embedding that enables the model to learn
native pronunciation from transliterated data and is trained to-
gether with the entire model to minimize the total loss. During
training, the model learns to associate the LSE with the cor-
responding text embedding, allowing it to shift the input text
representation from one language domain to another. This in-
tegration of the LSE into the training process ensures that it
becomes an integral part of the model’s learned representations.

Additionally, it is worth noting that when training translit-
erated scripts from language A to language B, the LSE eA2B

LSE is
added to the corresponding text embedding. This addition en-
ables the model to generate native pronunciations in language
B, leveraging the learned associations between the LSE and text
embeddings. Similarly, when training transliterated scripts from
language B to language A, the LSE eB2A

LSE is computed as the
negative of eA2B

LSE .
The effectiveness of the LSE in generating natural native

pronunciation and controlling pronunciation between two lan-
guages is verified in Sec. 4.5.

3.3. Conditional instance normalization

To improve pronunciation accuracy while preserving speaker
identity, we leverage CIN [18]. CIN is a popular technique for
regulating the hidden state with the desired information [28, 29,
30]. We adopt CIN to guide the training of our decoder.

Let X ∈ RC×T be the hidden state of the decoder, where
C is the number of channels, and T means the length of
the sequence. We set learnable affine parameters {γl, βl} and
{γs, βs} for language and speaker information, respectively.
These are used to regulate X so that the hidden states can be
guided by a specific language and speaker style.

The following equations summarize the CIN:

CIN (xc) = γc
xc − µc

σc
+ βc, (8)

where µc = 1
T

∑T
t=1 x

c
t , and σc =

√
1
T

∑T
t=1 (x

c
t − µc) + ϵ.

xt
c ∈ X represents the scalar value at the cth channel and the tth

time step of X and T means the length of the hidden sequence.

4. EXPERIMENTS
This section confirmed our model’s speech quality, speaker sim-
ilarity, and pronunciation accuracy. For this, subjective evalua-
tion based on MOS and objective evaluation using SLID were
conducted.

4.1. Experimental settings

We trained FACTSpeech based on a mixture of proprietary En-
glish and Korean datasets, containing 24 hours of audio. The
dataset contains 60 speakers, 30 for each language. We trimmed
the silence at the beginning and end of the audio and re-sampled
the audio to 22, 050 Hz. The 80-bin log mel-spectrogram is cal-
culated with a fast Fourier transform size of 1024, hop size of
256, and window size of 1024. We employed the LAMB [31]
optimizer with β1 = 0.9, β2 = 0.9, ϵ = 1e − 9, and a batch
size of 16. FACTSpeech was trained on an Nvidia T4 for 300
epochs, which took about 4 days. Additionally, we adopted the
learning rate scheduling method used in FastPitch [6]. We uti-
lized an internal transliteration module to convert English tran-
scripts into Korean transliterated form and used open-sourced
transliterate module2 to convert vise versa. The predicted mel-
spectrogram was converted into an audible waveform by pre-
trained Fre-GAN vocoder [32].

We basically followed Fastpitch’s hyperparameters setting.
We use 384-dimensional text embedding and LSE. Y. Zhang et
al. [9] and SANE-TTS [15] were used as TTS quality compari-
son models. We replaced the backbone network of these models
with FastPitch to ensure a fair comparison.

4.2. Evaluation on TTS

We measured speech naturalness and speaker similarity using
MOS. MOS and similarity MOS (SMOS) evaluations were con-
ducted on Amazon Mechanical Turk [33]. For the test, 80 ut-
terances were used. Audio samples were rated by at least 15
participants. Whether the generated speech has the correct pro-
nunciation was measured through SLID [23].

The results in Table 1 show that FACTSpeech can gener-
ate natural speech from transliterated scripts and standard text
input while maintaining speaker identity. The results show that
outperforms the other models with respect to the MOS, SMOS,

2https://github.com/osori/korean-romanizer
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Table 2: The additional studies of decoder component change
in terms of SLID are shown. Through FACTSpeech and w/o
CIN row, the effect of improving the pronunciation of CIN is
confirmed. The FACTSpeech and w/ Decoderm rows confirmed
that the speaker condition preceding the language condition im-
proves the performance.

[Input Type] to [Target Pronunciation]
EN to EN KO to KO T-EN to EN T-KO to KO

FACTSpeech 97.6% 99.9% 97.1% 99.9%
w/o CIN 89.2% 99.6% 89.6% 99.6%
w/ Decoderm3 87.4% 98.5% 87.8% 98.4%

and SLID for the cross-lingual situation. For intral-lingual sit-
uation, we observed that our model’s SMOS score is slightly
lower than the other models, but the difference is within the
margin of error.

4.3. Spoken language identification

We evaluated how well our model generates speech in the pro-
nunciation of the target language in four input types4. Table 2
shows the probability of being classified as the target language.
The probability is obtained from the SLID model published by
[23]. Comparing the SLID results of FACTSpeech and FACT-
Speech without CIN, it can be seen that the probability of being
classified as the target language is increased in all four cases.
From this, it can be seen that adding CIN improves the pronun-
ciation of speech generated from all input types. In particular,
it can be seen that the probability of being recognized as the
target language is high even in transliterated text. This means
we can generate native speech without prior knowledge of the
characters of the target language.

When comparing FACTSpeech and FACTSpeech w/
Decoderm, FACTSpeech shows high SLID results for all cases.
It can be confirmed that giving speaker information at the bot-
tom layers and language information at the top layers in the
decoder is effective in improving pronunciation.

4.4. Speaker-language disentanglement

To investigate the effect of transliterated data on speaker-
language disentanglement, we measured discrete probability
distribution (DPD) from a text representation. We trained test-
only speaker classifier, consisting of two linear layers with
ReLU activation and dropout.

Figure 3 represents the DPD results of a model (a) with-
out TDA and (b) with TDA. In Figure 3 (a), Korean text inputs
are mainly classified as Korean speakers, which demonstrates
the unsolved speaker-language entanglement. However, when
TDA is applied, it shows an even DPD results; this indicates
using TDA helps to remove speaker information from text rep-
resentations.

4.5. Pronunciation control between languages

We evaluated if our model can control the pronunciation be-
tween native and foreign-accent using LSE. We also compare
a model using language embedding (LE) [10] instead of LSE.
Table 3 compares the effect of LSE with LE. To do so, we used

3The language condition comes before the speaker condition in the
decoder.

4Four input types: “EN”, “KO”, “T-EN”, and “T-KO” represents En-
glish, Korean, a transliterated sentence from English to Korean, and a
transliterated sentence from Korean to English, respectively.

(a) without TDA

(b) with TDA

English speakers Korean speakers

English speakers Korean speakers

Figure 3: The speaker identification probability distribution
from text embeddings of Korean sentences is shown. Speaker
IDs 0 to 29 are for English speakers, while the other IDs are for
Korean speakers. We can see that using TDA disentangled the
language and speaker information.

Table 3: The effect of LSE on language style control. The values
represent the probability of SLID identifying the language as the
target language. LSE, as demonstrated, can synthesize speech
for target language pronunciation. In particular, transliterated
text to literal pronunciation cases outperformed the traditional
method with LE.

[Input Type] to [Target Pronunciation]
T-KO to EN T-KO to KO T-EN to EN T-EN to KO

LSE + TDA 45.9% 99.6% 89.6% 91.5%
LE + TDA 0.0% 98.6% 86.3% 7.8%

three types of eLSE to specify the language style of the gen-
erated speech. In detail, eLSE is set to

−→
0 , eeng2kor

LSE , ekor2eng
LSE ,

and
−→
0 for T-KO to EN, T-KO to KO, T-EN to EN, and T-EN

to KO, respectively. As a result, we confirmed using the SLID
model that the pronunciation style was uttered in the desired
language as the LSEs were changed. However, in the case of
the model to which LE was applied, the pronunciation style was
not controlled. We verified that the pronunciation control was
valid with inference examples. These results are on our demo
page5 (LSE interpolation demo), and we strongly suggest that
you check them out.

5. Conclusions
We present FACTSpeech, a TTS system that can model natural
pronunciation using only one native character set. To achieve
this, we propose the introduction of LSE and TDA. These meth-
ods help the model synthesize speech with accurate native pro-
nunciation and control pronunciation between two languages.
We apply CIN to improve pronunciation accuracy while pre-
serving speaker identity. Through experiments, we confirmed
that pronunciation control was possible using LSE and TDA,
and pronunciation performance improved using CIN. Pronun-
ciation control can make speech sound more diverse in terms
of accent. The study can also be extended as a data augmenta-
tion method as examples of non-natives’ speech. Although the
FACTSpeech system currently relies on the transliteration mod-
ule, we aim to investigate methods for training FACTSpeech
without the dependency on transliteration in future work.

5https://atozto9.github.io/demo/FACTSpeech/#i
nterpolation
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