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Abstract 

By incorporating lip language, audio-visual speech recognition 

can effectively improve the recognition effect in noisy environ-

ments, and will slightly improve the recognition effect in quiet 

environments. we use a frequency domain attention based re-

sidual network (Fca-Net) as the model of the vision front-end 

module, which extracts more features that are helpful to the 

AVSR and VSR system at a small cost. And use the powerful 

speech pre-training model Hu-BERT as the recognition front-

end model of ASR. We compare the impact of different model 

as visual back-end modules and fusion modules on the AVSR 

system. Our experiments show that the model selection of the 

fusion module is critical to the performance of the AVSR sys-

tem. Ultimately, our proposed model achieves state-of-the-art 

results on audio-visual speech recognition tasks using the LRS2 

dataset.  

Index Terms: audio-visual speech recognition, frequency do-

main attention, Hu-BERT, feature fusion 

1. Introduction 

Audio-visual speech recognition (AVSR) is a multi-modal 

speech recognition task that combines audio and visual streams. 

Since visual streams mainly rely on lip features to identify cor-

responding text, there will be problems with the same mouth 

shape but different pronunciations, resulting in the accuracy of 

lip language recognition lower. The audio stream is also af-

fected by noise. It is still challenging to improve the accuracy 

of the two, and to effectively combine the two to achieve com-

plementary effects. 

Traditional speech recognition uses manual features and 

machine learning for recognition. Dupont et al. [1] added hand-

crafted visual features on this basis to improve the accuracy of 

speech recognition. With the development of learning, manu-

ally crafted features are gradually replaced by features extracted 

through deep learning. In ASR, Parcollet et al. [2] and N. Ze-

ghidour et al. [3] have demonstrated that features extracted 

through deep learning achieve better results. With the popular-

ity of transformers [4], Gulati et al. [5] designed a convolution-

enhanced transform (Conformer) and achieved good results. In 

VSR, Stafylakis et al. [6] based on Assael et al. [7] have 

achieved good results by using a deeper network and proposing 

a 3D-ResNet network structure. At the same time, Martinez et 

al. [8] designed a network structure based on time convolution 

(TCN) for prediction, and Ma et al. [9, 10] designed a more 

efficient TS-TCN for prediction and improved it using different 

training strategies. Kim et al. [11] added a multi-head attention 

mechanism to improve lip reading for homonyms Word recog-

nition effect. Prajwal et al. [12] designed the coding layer of 

the Visual Transformer Pooling (VTP) structure, which has led 

to a new level of accuracy in lip language recognition. 

Some recent AVSR systems using deep learning have 

achieved promising results. For example, Afouras et al. [13] 

proposed a model using Seq2Seq as a loss function, while 

Petridis et al. [14] designed a hybrid CTC/attention architecture. 

Ma et al. [15] proposed an end-to-end audiovisual speech 

recognition model based on Conformer. In recent years, self-

supervised pre-training models have attracted attention. Shi et 

al. [16] designed a self-supervised pre-training model AV-Hu-

bert, while Pan et al. [17] used self-supervised models as sin-

gle-mode state front-end input and achieved good results on 

LRS2[18]. The audio front-end uses a self-supervised learning 

pre-training model called Wav2vec [19], and the visual front-

end uses MOCO [20,21], a self-supervised model of contrastive 

learning. However, the generalization of MOCO to lip images 

may not be as good since it is pre-trained on ImageNet [22]. In 

our model, an advanced speech pre-training model will be used, 

and the image pre-training model will not be used, Specifically, 

our contributions are the following:  

1.In the visual front-end, we use the Res-Net [23] network 

based on the frequency-domain attention mechanism developed 

by Qin et al. [24]. This model extracts important visual features 

from the frequency domain, and improves the model's effective-

ness at a small cost in terms of added parameters. In addition, 

we use the advanced Hu-BERT [25] as the audio pre-training 

model for the audio front-end.  

2.We explore the impact of using Transformer and Conformer 

as the visual back-end models on VSR and AVSR systems.  

3.We compare the effectiveness of using MLP, Transformer en-

coder, and Conformer as the models for the fusion part. Our 

experiments show that the transformer provides the good results 

for feature fusion. 

2. Methodology  

2.1. Visual Front-end 

For the visual flow, we use Fca-Net-50[24] to extract the fea-

tures of the 112*112 mouth grayscale image. This model con-

verts the feature map of each channel of ResNet-50 into a fre-

quency domain map and selects the value of a certain position, 

puts the value into the MLP layer for learning, and finally ob-

tains the attention weight of the channel. Simply put, the model 

weights the output of each layer of ResNet from the perspective 

of the frequency domain. However, there is not much difference 

between the front and rear video frames of the lips. Simply us-

ing one frame as the recognition target will lose the features 

brought about by the changes of the lips. Therefore, 3D convo-

lution is added before Fca-Net[24] to capture lip shape features 

and continuous changing characteristics. 
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Figure 1: This picture shows the overall structure diagram of the model, which is divided into 4 parts, which are the front-end modules 

of visual and auditory, back -end modules, fusion modules, decoding modules 

2.2. Audio Front-end 

For the auditory stream, we use Hubert, which is advanced than 

Wav2vec, as the model of the Audio Front-end. In Hubert, 

firstly a clustering model is obtained through unsupervised 

training to discretize the speech signal and obtain the target se-

quence (Hidden units). Then, the MLM self-supervised pre-

training method similar to BERT is used to enable the model to 

predict the target value of the mask position through the speech 

signal after masking. 

2.3. Visual back-end 

The conformer encoder and transformer encoder are respec-

tively used as the visual back-end model. However, the standard 

conformer encoder model has a downsampling process that re-

duces the sequence length of the feature to 25% due to the video 

frame rate of 25FPS. If the frequency is reduced too much, the 

number of features within a given time interval may be less than 

the predicted number of tokens, which can make decoding chal-

lenging. To address this, we remove the downsampling process 

of the conformer encoder to ensure that the frequency of the 

features is greater than the predicted number of tokens. 

2.4. Audio back-end 

As the audio front-end pre-training model is already powerful, 

there is no need to make extensive comparisons with the audio 

back-end models, and only the Transformer encoder is used for 

encoding. Since the output of Hubert is 49Hz, which is twice 

the sampling rate of the visual modality, a 1-D convolution 

layer with a stride of 2 is added to the Transformer encoder to 

ensure that the frequency of the output features of both modal-

ities is the same in the back-end output. 

2.5. Fusion 

Front-end and Audio back-end output are both 512-dimensional 

feature vectors with a frequency of 25. After batch normaliza-

tion and merging, 1024-dimensional feature vectors can be ob-

tained. For the new feature vectors, three types are used. The 

deep fusion of the neural network is the stacking of multiple 

MLP, the Conformer encoder and the Transformer encoder. 

2.6. Decoder 

The first type of Decoder uses the transformer seq2seq decoder 

for decoding, including the basic block of the 6-layer trans-

former. During training, teacher forcing is performed at the 

character level using ground truth characters as input, and are 

trained with cross-entropy loss. The second type relies on the 

linear layer of CTC loss for training and decoding, including 4 

linear layers and the corresponding ReLU activation function. 

The output is the CTC posterior probability of each input frame. 

Experiments by Afouras et al. [13] show that Seq2Seq is better 

than CTC, but the difference in performance is not significant. 

We use the two in combination, Following the setting of 

Petridis et al. [14] two decoders trained simultaneously based 

on the same output in the fusion module. 

2.7. Loss fusion 

Reference Petridis et al. [14] use a hybrid CTC/attention loss 

during training. Suppose x = [x1, · · ·, xT] is the output sequence 

of the fusion model, and y = [y1, · · ·, yL] is the targets corre-

sponding to the frame, with T and L representing the input and 

target lengths.  

Firstly, the CTC loss assumes that each output prediction 

is conditionally independent and has the following form, where 

x is the output of linear and y is the true label corresponding to 

the feature. 

𝑝𝐶𝑇𝐶(𝑦|𝑥) ≈ ∏ 𝑝(𝑦𝑙|𝑥)

𝐿

𝑙=1

(1) 

Secondly, an attention-based model removes this assump-

tion by directly estimating the posterior probability based on the 

chain rule, which can be expressed as the following formula, 

where x is the output of Transformer Encoder and y is the true 

label corresponding to the feature. 

𝑝𝐶𝐸(𝑦|𝑥) ≈ ∏ 𝑝(𝑦𝑙|𝑦 < 𝑙, 𝑥)

𝐿

𝑙=1

(2) 

The final loss calculation formula combines the two loss 

functions, with a weight coefficient α for CTC and attention 

mechanisms. This hybrid CTC/attention loss function has also 

been applied in automatic speech recognition (ASR) and visual 

speech recognition (VSR). 

ℒ = 𝛼𝑙𝑜𝑔𝑝𝐶𝑇𝐶(𝑦|𝑥) + (1 − 𝛼)𝑙𝑜𝑔𝑝𝐶𝐸(𝑦|𝑥) (3) 

3. Experiment 

3.1. Datasets 

In this work, our training and validation are mainly conducted 

on the LRS2 dataset [18]. We also utilize the LRW dataset [26] 

for Curriculum Learning to train the visual front-end. This ap-

proach significantly improves the convergence speed of the loss 

during the training of the visual-only (VO) model. 

3.2. Data Pre-processing and augmentation 

In each video, dlib is used to detect and track 68 facial land-

marks. Subsequently, a bounding box of size 120×120 is used 

to crop the mouth regions of interest (ROIs). then converted to 

grayscale and normalized with respect to the overall mean and 

variance on the training set. To address the issue of overfitting 

and enhance the model's ability to generalize, we adopted a 

3094



 

 

technique proposed by Pan et al. [17] where each preprocessed 

image sequence is randomly cropped to a size of 112×112 and 

horizontally flipped with a probability of 0.5 during pre-training 

and training. In our experiments, we observed that using a 

smaller mouth region during testing can slightly improve the 

accuracy of lip recognition. Therefore, during testing, we crop 

a region with dimensions of 88×88 from the center of the mouth. 

Each raw audio waveforms are normalized to zero mean 

and unit variance by subtracting its mean and dividing by its 

standard deviation. During audio-only training, additive noise 

is introduced in the time-frequency domain of the original audio 

waveform. Babble noise is added to the original audio stream 

with an SNR level ranging is 5dB and a probability of 𝑝𝑛 =
 0.25. Babble noise is synthesized by mixing 20 different audio 

samples from the LRS2 dataset. 

3.3. Experimental hyperparameter settings 

In this work, the parameters of the Fca-Net-34 model trained on 

ImageNet are used as the initial parameters for pre-training on 

the LRW dataset. The pre-trained model's parameters are then 

used for the front-visual-end model, while the rest of the model 

parameters are randomly initialized. Each stage of model train-

ing used the Adam optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝝐 = 

10−8. The learning rate is initialized to 10−4, which warm up and 

reduce on plateau scheduler and a final learning rate of 10-5. 

And all the models we used dropout with p =0.1 and label 

smoothing. The relative weight in CTC loss and seq2seq loss λ 

is set to 0.2. The Fca-Net model utilizes 16 pre-selected fre-

quency domain positions, as described in the paper by Qin et al. 

[24] All Transformer encoders use a set of hyperparameters 

(num_layer = 6, heads_num = 8, dff = 2048, d_model = 512), 

All Conformer encoders use the same set of hyperparameters 

from the original paper's medium Conformer (num_layer = 16, 

heads_num = 4, encoder_dim = 256, d_model = 512, 

conv_kerne-l_size = 32). Our implementation is based on the 

Pytorch library and trained on three NVIDIA V100 GPUs with 

a total of 96GB memory for 2 weeks. 

3.4. Evaluation 

For all of our experiments, we measure the performance using 

the Word Error Rate (WER), which is defined as WER = (S + 

D + I) / N. Here, S, D, and I represent the number of substitu-

tions, deletions, and insertions needed to transform the hypoth-

esis into the reference transcript, and N is the total number of 

words in the reference transcript.  

4. Results 

4.1. Result in LRS2 

Table 1 presents the results of our model and other models 

in the Visual-only, Audio-only, and Audio-Visual. Notably, our 

model does not utilize any language model, whereas other mod-

els leverage language models trained by NN, RNN, and Trans-

former. Moreover, our model solely utilizes the LRW dataset as 

external data, whereas other models rely on LRS3[27], 

LSVSR[28], and other datasets as external data. 

4.1.1. Only-visual-Result  

The data used for training includes labeled LRS2 data in its pre-

train and train sets and the LRW data used in Curriculum learn-

ing. The visual-only model achieved a WER of 37.7%, lagging 

behind the current state-of-the-art VTP with 15.1%. The VTP 

model uses more training datasets, including a large non-public 

dataset MV-LRS[32], while we only use the LRW dataset and 

the LRS2 dataset. Several experiments have proved that using 

more datasets will significantly improve the accuracy of the 

speech recognition model, and the front-end model of VTP uses 

a more complex structure that greatly increases the number of 

parameters and the training time, which has reached 14 days. In 

contrast, the front-end of our model uses Fca-Net, which only 

adds a channel attention mechanism in the middle of each block, 

equivalent to adding an MLP layer with a small number of pa-

rameters in the middle of each block. Furthermore, the token 

predicted by VTP is WordPiece, while our token is 40 charac-

ters, which is more difficult. Our model is more suitable for 

comparison with the end-to-end Conform model, because it has 

the same number of parameters as our model, and the predicted 

token is the same as the data set used. The error rate was re-

duced by 0.2%. Compared with the end-to-end Conform with-

out language model, the error rate is reduced by 4.7%. 

Table 1: Audio-only, visual-only and audio-visual results of 

word error rate (WER) tested on LRS2. Models with an * de-

note that results are using an external language model. 

Methods WER 

Visual-only  

TM-CTC*[13] 54.7 

Conv-seq2seq[29] 51.7 

TM-seq2seq*[13] 50.0 

KD-TM[30] 49.2 

LF-MMI TDNN*[31] 48.9 

E2E Conformer*[15] 37.9 

MOCO+Wav2vec [17] 43.2 

VTP[12] 22.6 

Our Model(transformer) 

Our Model(conformer) 

38.3 

37.7 

Audio-only  

TM-CTC*[13] 10.1 

TM-seq2seq*[13] 9.7 

CTC/attention*[14] 8.2 

LF-MMI TDNN*[31] 6.7 

E2E Conformer*[15] 3.9 

MOCO+Wav2vec [17] 2.7 

Our Model 2.2 

Audio-Visual  

TM-seq2seq*[13] 8.5 

TM-CTC*[13] 8.2 

LF-MMI TDNN*[31] 5.9 

E2E Conformer*[15] 3.7 

MOCO+Wav2vec [17] 2.6 

Our Model 2.1 

4.1.2. Only-audio-Result 

In the primary audio setting, the pre-train and train sets in LRS2 

are used as the train set in the Only-audio training stage, as well 

as the 60K hours unlabeled data from LibriLight [33] that are 

indirectly used through inheriting HuBERT parameters. Our 

model achieves a WER of 2.2%, which is a 0.5% reduction in 

WER compared to the current state-of-the-art [17], indicating a 

relative improvement of 19%. 

4.1.3. Audio-visual-Result  

The training data used for training the audio-visual model con-

sists of 224 hours of labelled video data from the pre-train and 
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train sets in LRS2. Our proposed audio-visual model achieves 

a WER of 2.1% without the help of an external language model, 

which represents an improvement of 0.5% over the current 

state-of-the-art[17] and a relative improvement of around 19%. 

4.2. Ablation Studies 

4.2.1. Fca-net Contribution in Visual Word Classification: 

Results of visual word classification on LRW are shown in Ta-

ble 2. We train a model by replacing the front-end model of 

ResNet-50 initialized with MoCo v2 weights with Fca-Net-50. 

An additional absolute improvement of 1.8% was observed, 

demonstrating that the frequency-domain attention mechanism 

can enhance the model's performance. 

Table 2: Ablation study on visual word classification perfor-

mance on LRW. 

Methods WER 

Baseline 74.6% 

+ ResNet-50 front-end 76.7% 

+ MoCo v2 front-end 79.0% 

+Fca-Net-50 80.8% 

4.2.2. Performance Breakdown in Visual-only Set-ting 

Results of the visual-only model on LRS2 are shown in Table 

3. Starting from Afouras et al.[13]we first introduce end-to-end 

training by using a hybrid CTC/attention decoder, resulting in 

an absolute improvement of 14.5%. Then adding the Curricu-

lum learning on the LRW dataset, the result is a relatively im-

proved by 2.8%, Following the design of Ma et al. [15], replac-

ing the back end with Conformer, the result was further im-

proved by 3.8%. Finally, adding the visual front-end to the Res-

Net based on the frequency-domain attention mechanism (Fca-

Net), the WER was 37.7%. This leads to an absolute improve-

ment of 4.7 %. 

Table 3: Ablation study on visual-only model on LRS2. 

Methods WER 

Baseline 63.5% 

+ Hybrid CTC/attention 49.0% 

+LRW pre-training 46.2% 

+Conformer encoder 42.4% 

+Fca-Net 37.7% 

4.2.3. Performance Breakdown in Fusion 

The results of the audio-visual model on LRS2 are shown in 

Table 4. In order to investigate the impact of different models 

on the fusion results, we conducted numerous experiments for 

comparison. It can be seen that regardless of whether the visual 

model backend is a Transformer or a Conformer, the fusion 

model using multiple MLP-stacked FC layers and Conformer 

encoders did not perform very well. In fact, the results were 

even worse than those of the pure audio model. However, when 

both fusion model and vision backend model use Transformer 

encoder, the performance of the audio-visual speech recogni-

tion model was 0.1% better than that of the single audio model. 

When adding 0dB noise, only using Transformer as the fusion 

model can lead to much better results than audio-only models. 

Analyzing the reason, the simple structure of MLP is not 

enough to effectively combine the features of the two modali-

ties, it may use visual features as interference features. And the 

convolutional structure inside the Conformer may not be suita-

ble for feature fusion, although it can or does a good job in sin-

gle-modal speech recognition. 

Table 4: The results obtained by the experiment in different 

visual back-end models using different fusion models 

Visual back-end 

Model 

Fusion Model WER 

0dB 

WER 

clean 

 

Conformer 

FC 25.9% 2.4% 

Transformer  23.5% 2.2% 

Conformer  24.7% 2.3% 

 

Transformer 

FC 23.5% 2.4% 

Transformer  19.5% 2.1% 

Conformer  22.7% 2.3% 

4.2.4. Robustness under Noisy Inputs 

Results of the audio-visual model on LRS2 are shown in Table 

4. In order to explore the speech recognition effect of audio-

only and audio-visual models in the presence of noise, we add 

babble noise with different SNR to the audio, and the signal-to-

noise ratios are 0dB and 5dB respectively. When the SNR level 

is 0dB, our audio-only and audio-visual models achieve WER 

of 22.3% and 19.5%, respectively, which is 9.8% and 5% higher 

than the results of MoCo+Wav2vec [17] When the SNR level 

is 5dB, our audio-only and audio-visual models achieve WER 

of 5.7% and 5.7%, respectively, which is 1.2% and 0.6% higher 

than the results of MoCo+Wav2vec [17]. 

Table 5: Word error rate (WER) under different SNR levels. 

The noises are synthesized babble noises. 

Model Modal 0 dB 5 dB clean 

TM-CTC[13] 
AO 58.0% - 10.5% 

AV 33.5% - 9.4% 

MoCo+Wav2vec 

[17] 

AO 32.5% 6.8% 2.7% 

AV 24.5% 6.3% 2.6% 

Our Model 
AO 22.3% 5.7% 2.2% 

AV 19.5% 5.8% 2.1% 

5. Discussion 

We design a new audio-visual speech recognition model and 

achieve a word error rate of 2.1% on the audio-visual speech 

recognition task on LRS2 data. According to Table 1, it can be 

seen that as the WER of audio-only continues to decrease, the 

importance of lip features in the audio-visual speech 

recognition model is also getting lower and lower. We improve 

the performance of visual-only and use a variety of fusion 

models , are trying to increase the role of lip features in the 

AVSR system, thereby improving the accuracy of audio-visual 

speech recognition. In addition, due to the large size of the 

LRS2 dataset and the high training cost, all positions in the 

frequency domain were not experimented with in sequence to 

select the suitable frequency domain position for lips. 
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