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Abstract
Although various deep keyword spotting (KWS) systems have
demonstrated promising performance under relatively noiseless
environments, accurate keyword detection in the presence of
strong noise remains challenging. Room acoustics and noise
conditions can be highly diverse, leading to drastic performance
degradation if not handled carefully. In this paper, we pro-
pose a noise management front-end called SE-SPP Net per-
forming speech enhancement (SE) and speech presence prob-
ability (SPP) estimation jointly for robust KWS in noise. The
SE-SPP Net estimates both the denoised Mel spectrogram and
the position of the speech utterance in the noisy signal, where
the latter is estimated as the probability of a particular time-
frequency bin containing speech. Further, it comes at relatively
no cost in model size when compared to a model estimating
the denoised speech. Our SE-SPP Net can improve noisy KWS
performance by up to 7% compared to a similar sized state-of-
the-art model at SNR -10dB.
Index Terms: keyword spotting, speech commands, speech
presence probability, noise robust, speech enhancement

1. Introduction
Driven by various mobile devices and smart home applications,
keyword spotting (KWS) systems have gained considerable at-
tention and form a cornerstone of human device interaction [1].
KWS systems continuously process audio streams to detect key-
words. In most scenarios, the devices are constrained in their
memory and power budget. Hence, it is paramount to design
KWS systems with an emphasis on small memory footprint and
low power consumption. On the other hand, background noise
is ubiquitous in our daily lives. Therefore, designing KWS sys-
tems that are robust to noise is equally important.

It is evident that existing KWS systems based on deep neu-
ral networks (DNNs) usually perform well in relatively clean
conditions, but often degrade significantly under noisy environ-
ments [2]. Without carefully accounting for the noise, a less
sensitive KWS system might fail to detect the keyword in low
signal-to-noise ratio (SNR) environments, leading to low detec-
tion rates. On the other-hand, a more sensitive system might
mistake background noise for keywords and accidentally trig-
ger the device, resulting in high false acceptance rates. Further,
it is even more challenging for small models to achieve robust-
ness to noise [3, 4].

In this paper, we focus on improving the robustness of KWS
in both noisy near and far-field environments while maintaining
a small memory footprint. We find that the key is to jointly per-
form speech enhancement (SE) to denoise the signal and at the
same time incorporate positional information of the keyword ut-
terance in the 2-D time-frequency (T-F) domain. To this end, we

propose a novel noise management front-end called SE-SPP Net
that simultaneously performs SE and speech presence probabil-
ity (SPP) [1, 5, 6] estimation. To our knowledge, current KWS
systems that cope with noise [7–12] have not considered utiliz-
ing such combination. The SE-SPP Net is trained to predict a
denoising mask and an SPP map. The denoising mask is used to
generate an estimate of the clean (noise-free) input signal. The
learned SPP map has values ranging from 0 to 1 to represent
the likelihood of the presence of speech in the noisy mixture
at the input, effectively encoding the positional information of
the utterance in the T-F domain. The learned SPP map is then
passed to the keyword detection (KWD) module along with the
denoised signal estimate. We present experimental results to
show that by incorporating SE+SPP into the KWS system, the
detection accuracy can be improved in noisy settings (both far-
field and near-field) even when the model size is small.

The contributions of our work are:

• We propose a modular design of KWS systems for both noisy
near and far-field environments comprising of two modules:
a novel combined SE+SPP noise management module (SE-
SPP Net), and a KWD module.

• We show dramatic performance improvement in accuracy
over state-of-the-art (SOTA) models with similar model size.

• Our proposed SPP module can boost performance with a very
negligible increment in model size.

2. Related work
KWS systems based on DNNs have shown promising perfor-
mance compared to the traditional approaches [13]. In 2017,
Google released the first large-scale speech command dataset
[14] consisting of 65000 one-second long utterances of 30 short
words collected through thousands of speakers. Since then, var-
ious deep learning frameworks have been proposed to push the
performance limit further [4,15–23]. However, as we shall show
in the experimental results, models that achieve SOTA results in
relatively clean keyword utterance detection fail in noisy condi-
tions, even when exposed to noise during training. Thus, these
solutions are far from satisfactory for various speech command
applications in the real world where environmental noise and
interference are ubiquitous. This indicates the need to train spe-
cialized KWS systems capable of handling such circumstances.

Several works have started to tackle the noisy KWS prob-
lem. In [24], a novel loss function based on the N -pair loss
function is proposed to improve KWS performance in noisy
conditions. In [12], a small-footprint KWS model is introduced
by constructing a novel convolutional neural network encoder
with a mixer module, along with the use of curriculum training
to learn better from data with SNR variety. Other works like
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Figure 1: The proposed noise robust KWS system consisting of an SE-SPP Net based noise management module and a keyword classi-
fication module incorporating SPP-based positional information in addition to the denoised signal for improved keyword detection.

[7, 10] use a speech denoising front-end followed by a KWD
module which are jointly optimized during training. However,
the denoising module is designed to estimate the entire clean
speech while the subsequent KWD module only takes the Mel
spectral magnitude as input features. This in turn could result
in reduced efficiency due to the redundancy for phase estima-
tion, leading to the model easily getting over 1M parameters.
Although the above KWS works have demonstrated certain ro-
bustness to noise to some extent, we still see that existing KWS
systems often trade off model conciseness for increased detec-
tion rate, especially in the presence of strong noise.

3. Proposed method
3.1. Overview

Figure 1 depicts the proposed KWS system where a noise man-
agement module (SE-SPP Net) is cascaded with a KWD mod-
ule. The model takes the short-time Fourier transform (STFT)
[25] of a noisy audio signal X ∈ CF×T as input, where F is the
number of frequency bins and T is the number of time frames.
The SE-SPP Net takes the real and imaginary parts of the noisy
STFT, i.e., Xr ∈ RF×T and Xi ∈ RF×T as inputs to jointly
perform denoising and SPP estimation. It provides two outputs:
a mask to enhance the input noisy spectrogram and the other
represents the SPP. The denoising mask M̂ is a matrix of size
F×T with elements ranging between 0 and 1. The mask is then
multiplied with |X| to generate the enhanced magnitude spec-
trogram. It is then transformed to the Mel spectral domain. Ad-
ditionally, the estimated SPP map (denoted by M̂spp) is com-
puted directly in the Mel spectral domain with the dimension
matching that of the enhanced Mel spectrogram. Subsequently,
both the enhanced Mel spectrum and the estimated SPP map
are fed into the second stage of KWS system, the KWD mod-
ule. The KWD module performs the classification task to pre-
dict the class label y. Note that the proposed methodology can
be applied to any existing deep KWS models.

3.2. U-Net based noise management module (SE-SPP Net)

The SE-SPP module is based on a U-Net [26] architecture
which leverages a series of encoders and decoders based on 2-D
convolutions with skip connections for enhanced feature extrac-
tion. The U-Net has been widely adopted in many T-F domain
audio processing tasks including SE [27–29]. In this paper, we
modify the U-Net to enhance the input signal as well as com-

pute the SPP map to aid the downstream KWD module.
The proposed noise management module takes the real and

imaginary spectrograms of the noisy STFT as inputs and pre-
dicts i) a denoising mask to be multiplied with the noisy STFT
magnitude to enhance the input noisy speech magnitude and ii)
an SPP map that represents the likelihood of the speech being
present in each T-F bin in the Mel spectrogram domain. The two
outputs, i.e., the masked speech magnitude spectrogram and the
predicted SPP map are both passed to the KWD stage for per-
forming classification.

To learn to estimate the SPP, the network is trained to pre-
dict a pre-computed binary map that represents speech presence
(=1) and absence (=0) obtained from the ground truth clean
speech. The SPP map thus inherently carries information re-
garding the position of the speech utterance on the 2-D spectro-
gram which provides useful information for the later detector to
better focus on capturing the keyword characteristics.

3.3. BC-ResNet based KWD module utilizing SE and SPP

For the KWD module we adopt the BC-ResNet [18] which is
developed based on broadcasted residual learning that utilizes
the advantage of 1-D temporal and 2-D convolution while min-
imizing the increase of computation for KWS. In our system,
the BC-ResNet takes the denoised Mel spectrogram and the es-
timated SPP map from the previous SE-SPP Net as input fea-
tures and predict the probability of the keyword being uttered
at the output. The advantages of the proposed method are i) the
KWD module sees a relatively noiseless signal rather than see-
ing the original noisy mixture and ii) the KWD module sees the
positional information of the speech utterance distributed in the
T-F domain and can hence learn to better detect keywords.

3.4. Training loss:

The entire noise management + keyword detection system is
trained in a two-step manner. In the first step, only the U-Net
(SE-SPP Net) is trained to perform proper denoising. Then in
the second step the U-Net and the BC-ResNet are jointly trained
to perform the final classification. To be more specific, in the
first step we optimize the following loss function:

Lpre = λL1(|Ŝmel|, |Smel|) + L2(M̂spp,Mspp), (1)

where L1(·, ·) and L2(·, ·) are some criteria for measuring the
distance between the two arguments and λ > 0 is a hyper-
parameter for weighting the Mel spectrogram regression loss.
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(a) Noisy Mel spectrogram (dB)
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(b) Clean (w/ reverb) Mel spectrogram (dB)
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(c) Denoised Mel spectrogram (dB)
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(d) Clean (w/o reverb) Mel spectrogram
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(e) Ground truth SPP map
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(f) Estimated SPP map

Figure 2: Mel spectrograms and SPP maps of a particular noisy keyword “left” at -10 dB SNR to illustrate the proposed framework
in Figure 1. (a) The noisy signal in Mel spectrogram domain. (b) The corresponding clean signal with room reverberation Smel. (c)
The denoised signal Ŝmel from SE-SPP Net. (d) the corresponding clean far-field signal without room reverberation (non dB). (e) The
ground truth SPP map that can be obtained by thresholding either (b) or (d). (f) The estimated SPP map M̂spp from SE-SPP Net.

In this paper, we use the MSE loss for L1 and the binary cross-
entropy (BCE) loss for L2. Note that in this phase the SE-SPP
Net is trained on a set of noisy-clean pairs of speech signals.
Specifically, the target Mspp is obtained from the clean sig-
nal without reverberation whereas the Smel is derived from the
clean speech signal with reverberation.

After the SE-SPP Net is well-trained, we then jointly train
the whole system along with the KWD module with a combined
loss function that includes the loss pertaining to the keyword
classification task and also the denoising and SPP loss used dur-
ing pretraining. The loss function in this step is written as:

Lfull = L3(ŷ, y) + γLpre, (2)

where L3(·, ·) is the cross entropy loss and γ > 0 is a hyper-
parameter for weighting the combined denoising and SPP loss
with respect to the cross entropy loss.

4. Experiments
Datasets: We use the 12 class Google Speech Command V2
(GSCV2) dataset [14] to evaluate our proposed method. Our
goal is to design a KWS system for both near-field and far-field
data. To achieve this, we pre-process the dataset in a two step
manner. In the first step, following a procedure similar to [12],
we convert 50% of the clean speech data to far field. The con-
version to far field is performed by using the BUT Speech@FIT
Reverb Database’s room impulse responses [30]. In the sec-
ond step we add noise profiles from the “noise” subset of MU-
SAN [31] to all the files. Noise is added (after the previous
step) by randomly selecting one of the 930 noise profiles and
adding them at an SNR randomly sampled from the set [20, 15,

10, 5, 0, -3, -5, -7, -9, -10, -12]. We use 80:10:10 split of the
dataset to form the training, validation and testing datasets. In
addition to the GSCV2 data, we also use the VoiceBank cor-
pus [32]. In particular, we use 11000 speech samples from this
corpus to train the first stage of our model to perform denoising.
This allows us to leverage more generic speech data that do not
contain keywords to train the denoising module. We process the
VoiceBank data in the same way as GSCV2, by adding reverb to
50% of the data and then adding noise sampled from MUSAN
at various SNRs.

To generate the ground truth SPP map for all speech data,
we use their corresponding clean speech data without reverb
and convert it into Mel-scale magnitude map as shown in Fig-
ure 2(d). Each T-F bin with magnitude greater than 0.15 is la-
beled as ‘1’ (contains speech) and otherwise ‘0’ (speech ab-
sent). Note that it is also possible to use reverb Mel spectrum
in Figure 2(b) with threshold to generate the ground truth SPP
label. To generate the target signal for denoising, we use the
clean speech with reverb for the far field data and clean speech
without reverb for the near field data. This way, we train the de-
noising module only to enhance speech by removing noise and
not overcome reverb.

Implementation details: Our proposed framework can use any
denoising architecture. Here, we adopted the U-Net1 for the
purpose of demonstration, restricted to only having 40K param-
eters. The number of input and output channels are set to 2 as
shown in Figure 1. One of the output channels is the denoising

1We used the implementation from https://github.com/
milesial/Pytorch-UNet.
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Table 1: Results over training on the 12 class GSC-V2 dataset with ten keywords, an unknown, and a silence class. Results for the
ConvMixer are obtained from the paper [12]. The rest are trained by us.

Model Acc (%) Num. Params 20 dB 0 dB -5 dB -10 dB -15 dB -20 dB

SE + SPP + BCResNet-1 (Ours) 80.21% 50.5K 88.61% 83.60% 77.08% 71.16% 60.30% 50.14%
SE + SPP + BCResNet-3 (Ours) 82.63% 100K 90.94% 85.67% 81.20% 73.78% 64.46% 53.24%
SE + SPP + BCResNet-5 (Ours) 84.29% 190K 91.37% 86.03% 81.81% 75.30% 65.10% 54.49%

BCResNet-1 [18] 70.69% 9.8K 72.16% 70.66% 64.87% 56.35% 43.24% 41.15%
BCResNet-3 [18] 77.28% 58.9K 76.69% 70.67% 68.62% 59.64% 44.51% 43.70%
BCResNet-5 [18] 78.84% 147K 78.74% 70.54% 58.80% 68.56% 56.47% 37.69%
BCResNet-7 [18] 80.23% 275K 80.79% 80.78% 77.47% 67.00% 61.88% 42.97%

ConvMixer [12] - 119K 87.85% 78.10% 72.78% 66.50% - -
ConvMixer (with Curriculum Training) [12] - 119K 90.83% 83.04% 78.39% 71.88% - -

Table 2: Ablation study showcasing the improvement from Speech Presence Probability (SPP) module.

Model Acc (%) Num. Params 20 dB 0 dB -5 dB -10 dB -15dB -20dB

SE + SPP + BCResNet-1 80.21% 50.5K 88.61% 83.60% 77.08% 71.16% 60.30% 50.14%
SE + BCResNet-1 77.61% 50.1K 86.03% 80.82% 75.70% 68.87% 58.75% 48.63%

SE + SPP + BCResNet-3 82.63% 100K 90.94% 85.67% 81.20% 73.78% 64.46% 53.24%
SE + BCResNet-3 81.59% 99.2K 89.34% 83.24% 79.31% 71.98% 62.27% 50.84%

SE + SPP + BCResNet-5 84.29% 190K 91.37% 86.03% 81.81% 75.30% 65.10% 54.49%
SE + BCResNet-5 81.91% 188K 89.82% 84.10% 80.33% 74.11% 63.88% 52.70%

mask. The other output channel is passed through a 1-D max-
pooling of kernel size 45 and stride 12 to convert a frequency
dimension of 513 down to 40. This 40-dimensional entity be-
comes the estimated SPP map. For the KWD module, there are
multiple possible architectures, e.g., [18, 21, 22]. Here, we use
BC-ResNet [18] as it achieved SOTA results on clean keyword
detection and provides an easy mechanism to vary the model
size by changing the scaling factor.

For computing STFT, we use FFT of size 1024 to process
frame of size 30 ms with a hop length of 10 ms. The Mel Filter
Bank used to convert the denoised STFT spectrum (obtained
by multiplying the noisy STFT magnitude with the denoising
mask, referred to Figure 1) to Mel spectrogram is also set to 40.

Training details: We divide our training procedure into two
parts as mentioned earlier. The first part uses only the noisy
VoiceBank data to train the denoised module as decribed in Sec.
3.2. The batch size is set to 4, λ to 0.01, and an initial learn-
ing rate of 1e-3 is decayed by 0.1 every 50 epochs. The total
training is carried out for 250 epochs and the best model (based
on validation set) is chosen for the next training stage. For the
second part, we use noisy GSC to jointly train both the noise
management module and the KWD module as illustrated in Fig-
ure 1. The batch size is set to 100 and we apply the the one-cycle
learning rate scheduler [33] where the learning rate goes from
0.004 to 0.1 over seven epochs and decays to 4× 10−6 over the
next 18 epochs. γ is set to 1.

Results: Table 1 showcases the classification accuracy of of dif-
ferent models. The first set of models we consider are the pro-
posed models denoted as “UNet + SPP + BCResNet.” Here, the
UNet is fixed and only the size of the KWD is varied by vary-
ing the scaling factor of the BC-ResNet [18]. We also consider
two external baselines. In the first, we perform multi-condition
training [34] on various BC-ResNet models. The second is
SOTA for noisy keyword detection, the ConvMixer [12]. The
value in the “Acc (%)” represents the case where the test sam-
ples are subject to SNRs from the same range that was used for
the training data. We also study cases where all test samples are

subject to a single SNR indicated by the column heading.
We first compare our proposed models with the BC-ResNet

baseline. We find that the smallest proposed model “UNet
+ SPP + BCResNet-1” achieves almost 3% improvement
in accuracy compared to BCResNet-3 while being slightly
smaller. In fact, it achieves the same performance as
BCResNet-7 which is five times larger. Second, we compare
our proposed model (“UNet + SPP + BCResNet-3”) with the
current SOTA and comparably sized ConvMixer. We find that
our proposed models with slightly lesser parameters (19%
lesser) outperform ConvMixer significantly, obtaining im-
provements in the range of 3% to 8% over the range of
SNRs tested. Note, for the ConvMixer, we do not have the
results of overall accuracy over the test set with randomly sam-
pled SNRs, since the set of SNR choices was constructed by
us and not [12]. Further, even though our models are not
trained with curriculum learning, our models match the
performance of the curriculum trained ConvMixer at high
SNR and surpass it by 2% to 3% in the lower SNRs.

In Table 2 we perform ablation studies by studying the im-
portance of the SPP component where both models were trained
with the same hyper-parameters and same procedures. With
very negligible increase in number of parameters (<1%),
the SPP module yields upto 3% improvement in accuracy.
Table 2 showcases the qualitative results corresponding to the
denoising and the SPP estimation components individually.

5. Conclusion
In this paper, we presented a deep KWS system robust to envi-
ronmental noise based on a novel noise management front-end,
i.e., SE-SPP Net, that combines SE and SPP estimation. This
front-end module performs denoising and at the same time en-
codes the positional information of the speech utterance in the
T-F domain to facilitate the subsequent KWD model learning.
We demonstrated that the SE-SPP Net front-end module is able
to improve keyword detection robustness in very noisy environ-
ments, especially in the small memory-footprint KWS regime.
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[13] I. López-Espejo, Z.-H. Tan, J. Hansen, and J. Jensen, “Deep spo-
ken keyword spotting: An overview,” IEEE Access, 2021.

[14] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” CoRR, vol. abs/1804.03209, 2018. [Online].
Available: http://arxiv.org/abs/1804.03209

[15] S. Choi, S. Seo, B. Shin, H. Byun, M. Kersner, B. Kim, D. Kim,
and S. Ha, “Temporal convolution for real-time keyword spot-
ting on mobile devices,” in Proceedings of the Annual Confer-
ence of the International Speech Communication Association (In-
terspeech), 2019, pp. 3372–3376.

[16] X. Li, X. Wei, and X. Qin, “Small-footprint keyword spotting with
multi-scale temporal convolution,” in Proceedings of the Annual
Conference of the International Speech Communication Associa-
tion (Interspeech), 2020, pp. 1987–1991.

[17] M. Xu and X.-L. Zhang, “Depthwise separable convolutional
ResNet with squeeze-and-excitation blocks for small-footprint
keyword spotting,” in Proceedings of the Annual Conference
of the International Speech Communication Association (Inter-
speech), 2020, pp. 2547–2551.

[18] B. Kim, S. Chang, J. Lee, and D. Sung, “Broadcasted residual
learning for efficient keyword spotting,” in Proceedings of the
Annual Conference of the International Speech Communication
Association (Interspeech), 2021, pp. 4538–4542.

[19] M. Zeng and N. Xiao, “Effective combination of DenseNet and
BiLSTM for keyword spotting,” IEEE Access, vol. 7, pp. 10 767–
10 775, 2019.

[20] O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, and
S. Laurenzo, “Streaming keyword spotting on mbile devices,” in
Proceedings of the Annual Conference of the International Speech
Communication Association (Interspeech), 2020, pp. 2277–2281.

[21] A. Berg, M. O’Connor, and M. T. Cruz, “Keyword transformer: A
self-attention model for keyword spotting,” in Proceedings of the
Annual Conference of the International Speech Communication
Association (Interspeech), 2021, pp. 4249–4253.

[22] Y. Bai, J. Yi, J. Tao, Z. Wen, Z. Tian, C. Zhao, and C. Fan, “A
time delay neural network with shared weight self-attention for
small-footprint keyword spotting,” in Proceedings of the Annual
Conference of the International Speech Communication Associa-
tion (Interspeech), 2019, pp. 2190–2194.

[23] X. Chen, S. Yin, D. Song, P. Ouyang, L. Liu, and S. Wei, “Small-
footprint keyword spotting with graph convolutional network,” in
Proceedings of IEEE Automatic Speech Recognition and Under-
standing Workshop (ASRU), 2019, pp. 539–546.

[24] K. Sohn, “Improved deep metric learning with multi-class N-pair
loss objective,” in Advances in Neural Information Processing
Systems (NIPS), vol. 29, 2016.

[25] M. Parchami, W.-P. Zhu, B. Champagne, and E. Plourde, “Recent
developments in speech enhancement in the short-time Fourier
transform domain,” IEEE Circuits and Systems Magazine, vol. 16,
no. 3, pp. 45–77, 2016.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proceedings
of International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), 2015, pp. 234–241.

[27] R. Giri, U. Isik, and A. Krishnaswamy, “Attention wave-u-net
for speech enhancement,” in Proceedings of IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WAS-
PAA), 2019, pp. 249–253.

[28] H.-S. Choi, J.-H. Kim, J. Huh, A. Kim, J.-W. Ha, and K. Lee,
“Phase-aware speech enhancement with deep complex U-Net,” in
Proceedings of International Conference on Learning Represen-
tations (ICLR), 2019.

[29] R. Gao and K. Grauman, “Co-separating sounds of visual ob-
jects,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (CVPR), 2019, pp. 3879–3888.
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