
Quantization-Aware and Tensor-Compressed Training of Transformers for
Natural Language Understanding

Zi Yang1, Samridhi Choudhary2, Siegfried Kunzmann2, Zheng Zhang1

1 Department of Electrical & Computer Engineering, University of California, Santa Barbara, CA
2 Amazon Alexa AI

ziy@ucsb.edu, samridhc@amazon.com, kunzman@amazon.com, zhengzhang@ece.ucsb.edu

Abstract
Fine-tuned transformer models have shown superior perfor-
mances in many natural language tasks. However, the large
model size prohibits deploying high-performance transformer
models on resource-constrained devices. This paper proposes a
quantization-aware tensor-compressed training approach to re-
duce the model size, arithmetic operations, and ultimately run-
time latency of transformer-based models. We compress the
embedding and linear layers of transformers into small low-rank
tensor cores, which significantly reduces model parameters. A
quantization-aware training with learnable scale factors is used
to further obtain low-precision representations of the tensor-
compressed models. The developed approach can be used for
both end-to-end training and distillation-based training. To im-
prove the convergence, a layer-by-layer distillation is applied to
distill a quantized and tensor-compressed student model from
a pre-trained transformer. The performance is demonstrated in
two natural language understanding tasks, showing up to 63×
compression ratio, little accuracy loss and remarkable inference
and training speedup.
Index Terms: model compression, tensor decomposition,
quantization, natural language understanding

1. Introduction
Transformer models [1] have been widely used for natural lan-
guage understanding (NLU) [2–4] and automatic speech recog-
nition (ASR) [5–7]. Typically, larger pre-trained transformer
models perform better on downstream tasks [2,8–10]. However,
these large-size models cannot be deployed directly on edge de-
vices due to the limited computing, memory, and energy re-
sources as well as low latency requirement. As a result, model
compression has become an indispensable step to enable effi-
cient deployment of large NLU and ASR models on resource-
constraint hardware platforms [11–13]. Existing works have
studied NLU and ASR model compression via knowledge dis-
tillation [14–17], quantization [18–20] and low-rank matrix fac-
torization [21, 22]. Among these approaches, low-rank matrix
compression normally achieves much higher compression ra-
tios.

Meanwhile, studies in the applied math community have
shown that tensor decomposition [23] often achieves a much
higher compression ratio than matrix compression approaches.
As a high-dimensional generalization of matrix decomposi-
tions, low-rank tensor decomposition has achieved state-of-
the-art results in neural network compression [24–27], includ-
ing both post-training compression and end-to-end compressed
training. Recently, tensor decomposition has also been em-
ployed to compress transformer models used in natural lan-
guage modeling [28]. Since many edge devices (e.g., embed-

ded CPU, embedded GPU and FPGA) support low-precision
computation, it is natural to ask if low-precision tensor com-
pression can be used to achieve further cost reduction on edge
devices. A previous study [29] investigated low-precision train-
ing of tensor-compressed models, but it shows that directly ap-
plying existing low-precision training in the tensor-compressed
setting can cause a remarkable accuracy drop even on a simple
two-layer perceptron network.

In this work, we present a quantization-aware and tensor-
compressed training approach for transformers. We first use
low-rank tensor train (TT) and tensor-train matrix (TTM) for-
mats to represent the embedding tables and linear layers respec-
tively, which achieve significant parameter reduction. To further
reduce memory and computing costs, we apply quantization-
aware training with learnable scale factors, which enforces the
low-rank tensor factors of transformer models into low pre-
cision. Our work uses 2-, 4-, or 8-bit fixed-point uniform
quantization. The proposed quantization-aware and tensor-
compressed training can be used for both end-to-end training
and post-training compression. In order to leverage the infor-
mation of pre-trained transformer models to save the training
cost, we further employ layer-by-layer distillation [15] to match
the internal outputs and attention probabilities of the original
model and our low-precision tensor-compressed model to main-
tain the generalization capability. This layer-by-layer distilla-
tion can avoid the divergence issue of distilling all layers in a
tensor-compressed format. We demonstrate the quantization-
aware and tensor-compressed training approach on NLU tasks,
ATIS dataset [30] and GLUE benchmark [31]. We perform end-
to-end training on the ATIS dataset and compress the BERT-
base via layer-by-layer distillation on the GLUE benchmark. In
both tasks, our approach reaches ultra-low model size with little
performance degradation.

2. Methodology
2.1. Tensor-Compressed Transformer Training

A typical transformer model [1] consists of an embedding table
and a set of encoder blocks, where each encoder has one self-
attention layer and one feed-forward layer. All self-attention
and feed-forward layers are composed of linear layers. The em-
bedding table can be regarded as a special type of linear layer.
Tensor-compressed transformer compresses the weight matri-
ces of the linear layers into small tensor cores. We directly train
the small tensor cores rather than larger weight matrices.

Consider the linear layer y = Wx + b, where x ∈ RN is
the input, W ∈ RM×N is the weight matrix, and b ∈ RM

is the bias vector. The weight W is reshaped into a ten-
sor W ∈ Rm1×···×md×n1×···nd , where Πd

i=1mi = M and
Πd

i=1ni = N . Then we employ either the tensor-train (TT) for-

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

3292 10.21437/Interspeech.2023-2045



mat or tensor-train matrix (TTM) format to reduce the number
of model parameters.

TT Compression. The TT format represents tensor W
as a set of small-size tensor cores G1, . . . ,G2d, where Gi ∈
Rri−1×mi×ri for 1 ≤ i ≤ d and Gi ∈ Rri−1×ni−d×ri for
d + 1 ≤ i ≤ 2d. The tensor W and the tensor cores {Gi}2di=1

satisfy the following equation

W(i1, . . . , id, j1, . . . , jd) = Gi1
1 · · ·Gid

d Gj1
d+1 · · ·G

jd
2d,

where G
ik
k := Gk(:, ik, :) ∈ Rrk−1×rk and G

jk
k+d := Gk+d(:

, jk, :) ∈ Rrk−1+d×rk+d . The tuple (r0, r1, . . . , r2d) is called
the TT rank, with r0 = r2d = 1. The TT-compressed lin-
ear layer stores the small tensor cores {Gi}2di=1 rather than the
large matrix W. After compression, the number of model pa-
rameters is reduced to

∑d
i=1(ri−1miri + ri−1+dniri+d) from

MN = m1 · · ·mdn1 · · ·nd. For fixed ranks, the reduction is
roughly O(m1 · · ·mdn1 · · ·nd) → O(

∑d
i=1(mi + ni)). The

compression ratio is determined by the TT rank. For the con-
venience of discussions and experiments, we fix the TT rank
before training, but the TT ranks can also be determined auto-
matically in the training process [25]. The matrix-vector multi-
plication in TT format can be done efficiently with fewer arith-
metic operations than standard matrix-vector products [32].

TTM Compression. The TTM decomposition represents
tensor W as d tensor cores {Fi ∈ Rpi−1×mi×ni×pi}di=1. The
tensor cores satisfy

W(i1, . . . , id, j1, . . . , jd) = Fi1,j1
1 · · ·Fid,jd

d ,

where F
ik,jk
k := Fk(:, ik, jk, :) ∈ Rpi−1×pi .

The matrix-vector product using TT format is faster TTM
format since the contraction order for TT format is optimized
as in [32]. The TTM compression is more suitable for weight
matrices with unbalanced rows and columns. In our tensor-
compressed transformer, all linear layers in encoder blocks are
trained in the TT format for efficient computation, and the em-
bedding table is trained in the TTM format since the number of
rows is much larger than the number of columns.

Assume that the weights and embedding tables {Wj}Mj=1

of a transformer are represented with a set of small ten-
sor cores {Gi}Ni=1. The training variables in the tensor-
compressed model are the tensor cores {Gi}Ni=1. Suppose
that the tensor-compressed model parameterized by the tensor
cores is f(x|{Gi}Ni=1). The full-precision end-to-end tensor-
compressed training is to minimize the model loss:

min
{Gi}Ni=1

∑

k

loss
(

targetk, f(xk|{Gi}Ni=1)
)
.

2.2. End-to-End Quantization-Aware Training

With TT/TTM compression, we further reduce the model size
by quantization-aware training with learnable scale factors. The
goal is to obtain ultra low-bit representation for all tensor cores
used for compressing a transformer model.

Assume that the tensor cores are represented with b-
bit quantization {Q(Gi, δi, b)}Ni=1 to save the computing and
memory cost on edge devices. The quantization-aware tensor-
compressed training computes the tensor cores {Gi}Ni=1 and
scales {δi}Ni=1 via solving the following optimization problem:

min
{Gi,δi}Ni=1

∑

k

loss
(

targetk, f(xk|{Q(Gi, δi, b)}Ni=1)
)
.

We observe that the tensor cores are well centered around 0,
thus a symmetric quantization with scaling is employed. The
quantization function Q is defined as

Q(x, δ, b) := δ round
(

clip(
x

δ
,−2b−1, 2b−1 − 1)

)
,

where round(a) rounds a to its nearest integer and the func-
tion clip(a, vmin, vmax) clips x into the range [vmin, vmax]. The
quantization Q(x, b, δ) maps x into INTb. The range of weights
and tensor cores may differ dramatically before and after train-
ing. Thus, we set the scaling factor δ as a learnable variable that
can be automatically determined during training. The quanti-
zation function Q is not differentiable, but we can compute the
fake gradients to Gi and δi using straight-through estimators.
According to [33], the fake gradient of Q(x, δ, b) with respect
to δ and x is

∂Q(x, δ, b)

∂δ
:=





Q(x,δ,b)−x
δ

if − 2b−1 ≤ x
δ
≤ 2b−1 − 1

−2b−1 if x
δ
< −2b−1

2b−1 − 1 if x
δ
> 2b−1 − 1

(1)
∂Q(x, δ, b)

∂x
:=

{
1 if − 2b−1 ≤ x

δ
≤ 2b−1 − 1

0 otherwise . (2)

The scaling factors are layer dependent, i.e., different linear lay-
ers have different scaling factors. All tensor cores in the same
linear layer share the same scaling factor since they typically
have a similar range. During quantization-aware training, the
inputs of the linear layers are quantized into INT8, and all in-
termediate tensor contractions are computed in INT8 to reduce
computation costs further.

2.3. Layer-by-Layer Distillation of Low-Precision Tensor-
Compressed Transformers

Our quantization-aware tensor-compressed training performs
very well on end-to-end tasks. However, in some practical NLU
tasks, an end-to-end training from scratch can be expensive. In-
stead, one may want to learn a small-size model from a pre-
trained large model. Therefore, this subsection presents a layer-
by-layer distillation to learn a low-precision tensor-compressed
student model from a fine-tuned teacher model.

Suppose the teacher model is a transformer with an em-
bedding and L encoders. The low-precision tensor-compressed
student model has the same model architecture as the teacher
model, while the weights are represented by low-precision low-
rank tensor cores. Let yemb be the output of the embedding
table, y be the predicted soft label, and yi,attni be the output
and attention probability matrix of the ith encoder block of a
transformer. The superscript t and s indicate a teacher model
and a student model, respectively. Existing works [16, 18, 19]
use the following distillation loss for compression:

Lall :=MSE(yt
emb,y

s
emb) + COS(yt

emb,y
s
emb)

+
L∑

i=1

(MSE(yt
i ,y

s
i ) + COS(yt

i ,y
s
i ))

+
L∑

i=1

CE(attnt
i,attn

s
i )) + CE(yt/T,ys/T ), (3)

where MSE is the mean squared error, COS is the cosine sim-
ilarity, CE is the cross entropy loss, and T is the temperature
of soft labels. The above distillation loss matches soft labels,
the internal outputs, and attention probabilities to increase the
generalization property of a student model.

3293



Table 1: Tensor-compression setting for ATIS dataset.

format linear shape tensor shape rank
embedding TTM (800,768) (15,20,16,16,8) 30
attention TT (768,768) (24,32,32,24) 10

feed-forward TT (768,3072) (32,24,48,64) 10
classification TT (768,768) (24,32,32,24) 10

Address the Convergence Issue in Tensor-Compressed
Settings. Most existing works [14, 16, 18, 19] reuse pretrained
weights in the teacher model to initialize the student model
by making the two models similar at the beginning of train-
ing. Thus, the distillation loss containing outputs and atten-
tion probabilities of all layers performs well. However, the pre-
trained weight matrices may not have low-rank structures, thus
they cannot be directly used to initialize tensor-compressed dis-
tillation. In fact, the initial tensor-compressed transformer is
very different from the teacher model, causing the distillation
loss of all layers to fail in tensor-compressed training. Mo-
tivated by this observation, we use the layer-by-layer distilla-
tion proposed in [15], which matches the outputs and atten-
tion probabilities from top layers to bottom layers. The layer-
by-layer distillation starts from the embedding table with loss
L0 := MSE(yt

emb,y
s
emb)+COS(yt

emb,y
s
emb). Then, the loss

for the ith encoder block is

Li := Li−1 +MSE(yt
i ,y

s
i ) + COS(yt

i ,y
s
i )

+CE(attnt
i,attn

s
i )).

The loss Li aims to match the outputs and attention of the first
i encoder blocks. We train the tensor-compressed model using
the losses L0,L1, . . . ,LL sequentially. Finally, the soft labels
are added to the loss LL, and the loss becomes Lall in (3).

3. Experiments
We use two natural language understanding (NLU) bench-
marks to test our quantization-aware tensor-compressed train-
ing framework. Specifically, we test end-to-end and distillation-
based training on the ATIS dataset [30] and the GLUE bench-
mark [31], respectively. For the GLUE benchmark, we use
the fine-tuned BERT [2] model as a teacher model for our
quantization-aware and tensor-compressed distillation.

3.1. ATIS Dataset for End-to-End Training

The airline travel information system (ATIS) dataset [30] is an
NLU dataset containing utterances related to queries for flight
reservations. For each utterance, we need to detect its intent
and the slot annotation for each word in the utterance. On
this dataset, we perform end-to-end quantization-aware tensor-
compressed training.

The transformer model for this task has one embedding ta-
ble, two encoders, and two classification heads, where one head
is for intent classification and the other one is for slot filling. We
use its full-size and full-precision model as a baseline. We com-
press the embedding table and the two encoders into quantized
tensor cores. The first linear layer of each classification is com-
pressed into full-precision tensor cores. All other layers are kept
in the original form. Table 1 lists the compressed tensor shapes
and ranks. We use batch size 32 and the Adam optimizer [34]
with β1 = 0.9, β2 = 0.98, and learning rate 10−3. For each
model, we train 40 epochs and report the result in Table 2.

The intent classification task is measured by accuracy, and
the slot filling is measured by F1-score. The test results are re-

Table 2: Tensor-compressed training of Transformer on ATIS
dataset in precisions INT2, INT4, INT8, and FP32

intent slot size (MB)
Full-size full-precision 95.2 97.0 63 (1×)

Tensor-compressed FP32 96.0 96.2 3.3 (19×)
Tensor-compressed INT8 95.5 96.1 1.4 (45×)
Tensor-compressed INT4 94.3 96.2 1.1 (57×)
Tensor-compressed INT2 93.6 95.0 1.0 (63×)

ported in Table 2. Our full-precision tensor-compressed model
reaches 19× size reduction with almost the same performance
compared with the full-precision full-size baseline. The INT8

and INT4 models perform similarly to the baseline and the
FP32 tensor-compressed model, with less than 1% accuracy and
F1-score drop. The intent accuracy of the INT2 model drops
marginally. The INT4 and INT2 models have almost the same
size, because the low-precision tensor cores consumes negligi-
ble memory and the uncompressed layers and parameters (e.g.,
layer normalization and bias vectors) dominate the storage cost.
We can conclude that the quantized tensor-compressed trans-
former can reach around 60×compression ratio with less than
2% accuracy drop on this dataset.

3.2. GLUE Benchmark for Distillation

The General Language Understanding Evaluation (GLUE)
benchmark [31] is a collection of multiple natural language un-
derstanding tasks. It is widely used to evaluate the performance
of natural language models. Four datasets in GLUE are chosen
to test the proposed quantization-aware tensor-compressed dis-
tillation method described in Section 2.3. Among them, MNLI
and QNLI have the largest size, SST-2 is moderate, and MRPC
is the smallest. These datasets cover common natural language
understanding tasks.

BERT-base is a large model containing one large embed-
ding table and twelve encoders. One classification consisting of
two linear layers is attached to the end of BERT. The embedding
table, all linear layers in encoders, and the first linear layer in
the classification are compressed via quantization-aware tensor-
compressed training. We first fine-tune BERT-base on each
dataset and use the fine-tuned BERTs as the teacher models for
layer-by-layer distillation. Table 3 shows the detailed compres-
sion setting. In the experiments, we use batch size 32 and the
Adam optimizer [34] with (β1, β2) = (0.9, 0.98). The learning
rate is 10−3 for the losses L0, . . . ,L12 and is 5× 10−5 for the
last loss Lall. For each loss, we run 3, 5, 10, and 20 epochs for
MNLI, QNLI, SST-2, and MRPC, respectively.

Test results are reported in Table 4. All tasks are measured
by accuracy. We test two different ranks 30 and 50. The full
precision tensor-compressed training of rank 50 maintains the
most performance of BERT-base with only 1%− 2% accuracy
drop on every task. The accuracy slightly drops when decreas-
ing the precision to INT8 and INT4 while the compression ratio
increases to 17× and 35× from 4×. The INT4 model is only

Table 3: Tensor-compression setting for BERT-base.

format linear shape tensor shape
embedding TTM (30522,768) (64,80,80,60)
attention TT (768,768) (24,32,32,24)

feed-forward TT (768,3072) (32,24,48,64)
classification TT (768,768) (24,32,32,24)

3294



Table 4: Distillation-based tensor-compressed training results on development split of the GLUE benchmark. The INT8 tensor-
compressed model has the same number of operations as FP32, but those operations are cheap fixed-point operations.

precision size (MB) FLOPs (G) MNLI QNLI SST-2 MRPC
BERT-base [2] FP32 423 (1×) 20.3 (1×) 83.4 91.2 92.8 87.7

DistilBERT [14] FP32 254 (1.7×) 10.1 (2×) 82.2 89.2 91.3 87.5
BinaryBERT [19] INT1 16.5 (26×) 3.1 (7×) 84.2 91.5 92.6 85.5
LadaBERT-4 [22] FP32 42 (10 ×) — 75.8 75.1 84.0 —

Rank 50
FP32 99 (4×) 3.8 (5×) 82.1 89.1 90.0 86.5
INT8 24.3 (17×) 3.8 (5×) 80.7 88.1 89.6 85.8
INT4 12.1 (35×) 1.9 (11×) 79.7 87.9 89.2 85.5

Rank 30
FP32 39 (11×) 1.8 (11×) 80.1 88.1 89.3 85.1
INT8 9.5 (45×) 1.8 (11×) 78.3 87.2 89.2 85.0
INT4 4.8 (88×) 0.9 (23×) 77.4 86.9 88.3 84.8

12.1MB, suitable for inference on middle resource-constrained
edge devices. All results of rank 30 are slightly worse than
rank 50 because of the smaller model size. The rank 30 model
in INT4 is only 4.8MB while still having acceptable accuracy.
The tiny model is suitable for edge devices with strictly lim-
ited memory. The tensor-compressed training can easily ad-
just the model size by tuning the tensor rank in the model. It
makes the quantized tensor-compressed transformer work for a
wide range of devices with various resource budgets. In prac-
tice, we can also use rank-adaptive training [25] to automati-
cally determine the tensor ranks in both end-to-end training and
distillation-based training.

The 4th column of Table 4 shows the estimated compu-
tational FLOPs at inference for each model. Here, we only
count the FLOPs for matrix-vector/tensor-vector multiplica-
tions in encoders to simplify the computation. Other oper-
ations, like layer normalization and bias addition, only take
a very small amount of computation compared to matrix-
vector/tensor-vector multiplications. For FP32 operations and
quantized operations, FLOPs stand for the number of floating-
point operations and fixed-point operations, respectively. We
follow [19] to count the quantized operations, i.e., the multipli-
cation between an m-bit number and an n-bit number roughly
needs mn

64
fixed point operations. The full-precision tensor-

compressed model saves 5× and 11× FLOPs for ranks 50 and
30, respectively. The INT8 tensor-compressed model has the
same number of operations as FP32, but those operations are
cheap fixed-point operations. After reducing the precision to
INT4, the saving of FLOPs further increases to 11× and 23×
for ranks 50 and 30, respectively.

Compared to DistilBERT [14], BinaryBERT [19], and Lad-
aBERT [22], our quantization-aware tensor-compressed ap-
proach reaches the highest compression ratio (88×) with little
accuracy drop and has more flexibility to handle the trade-off
between model performance and model size by tuning tensor
ranks and model precisions.

We demonstrate the reduced computation of tensor-
compressed training and inference by end-to-end training on
the MNLI dataset training split with 393,000 sentences on an
RTX-3090 GPU with 24G memory. Table 5 shows that the
tensor-compressed training and inference are 1.8× faster than
the uncompressed training. The time reduction ratio is less than
the FLOPs reduction ratio in Table 4 because some small tensor
contractions in tensor-vector multiplication are not parallelized
on GPU. We expect the runtime reduction ratio to be similar to
the FLOPs reduction ratio after optimizing the parallelization of
the tensor contractions.

Table 5: Inference and training time for one epoch on MNLI
training split with batch size 128.

inference training
uncompressed 8.8min 26min

tensor-compressed 4.7min (1.8×) 14min (1.8×)

4. Conclusions and Remarks
To compress transformer-based NLU models, we have pro-
posed a quantization-aware and tensor-compressed method for
both end-to-end training and distillation-based training. The
embedding table and linear layers are compressed into small
tensor cores, thereby substantially reducing the total number
of model parameters. Besides that, we have applied quan-
tization to each tensor core, further reducing memory costs.
Quantization-aware training with trainable scaling factors has
been used to learn the quantized tensor cores. To learn a com-
pact NLU and speech recognition model from a pre-trained
large transformer model, we have proposed to use layer-by-
layer distillation method. This method outperforms the dis-
tillation that combines all layer outputs which typically leads
to divergence in tensor-compressed training. We have evalu-
ated our quantization-aware tensor-compressed training for two
NLU tasks, where our compressed models have achieved high
compression ratios with minimal accuracy drop. The quantized
tensor-compressed models can have vastly different model sizes
for various combinations of tensor ranks and precision. The ex-
periment has demonstrated that our approach could maintain
good accuracy even for extremely low ranks and precision. Our
method allows additional deployment flexibility on devices with
varying resource constraints.

We would like to remark that our method can be applied to
all transformer-based models for compression, not only limited
to BERT. For instance, our approach has the potential to highly
compress the transformer part of wav2vec2 [10], a pre-trained
transformer-based model for speech recognition.

5. Acknowledgements
The authors would like to thank Ershad Banijamali, Clement
Chung, Athanasios Mouchtaris, and Hieu Nguyen from Ama-
zon for their fruitful suggestions and comments!

6. References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”

3295



Advances in neural information processing systems, vol. 30, 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: pre-
training of deep bidirectional transformers for language under-
standing,” in Proc. Association for Computational Linguistics:
Human Language Technologies, 2019, pp. 4171–4186.

[3] W. Antoun, F. Baly, and H. Hajj, “AraBERT: transformer-based
model for arabic language understanding,” in Proceedings of the
4th Workshop on Open-Source Arabic Corpora and Processing
Tools, with a Shared Task on Offensive Language Detection, 2020,
pp. 9–15.

[4] M. H. Radfar, A. Mouchtaris, and S. Kunzmann, “End-to-end neu-
ral transformer based spoken language understanding,” in Inter-
speech, 2020, pp. 866–870.

[5] N. Moritz, T. Hori, and J. Le, “Streaming automatic speech recog-
nition with the transformer model,” in Proc. Intl. Conf. Acoustics,
Speech and Signal Processing, 2020, pp. 6074–6078.

[6] S. Zhang, E. Loweimi, P. Bell, and S. Renals, “On the useful-
ness of self-attention for automatic speech recognition with trans-
formers,” in IEEE Spoken Language Technology Workshop (SLT),
2021, pp. 89–96.

[7] S. Kim, A. Gholami, A. E. Shaw, N. Lee, K. Mangalam, J. Ma-
lik, M. W. Mahoney, and K. Keutzer, “Squeezeformer: An effi-
cient transformer for automatic speech recognition,” in Advances
in Neural Information Processing Systems, 2022.

[8] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A
robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[9] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for lan-
guage understanding,” Advances in neural information processing
systems, vol. 32, 2019.

[10] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec
2.0: A framework for self-supervised learning of speech repre-
sentations,” Advances in neural information processing systems,
vol. 33, pp. 12 449–12 460, 2020.

[11] K. Mysore Sathyendra, S. Choudhary, and L. Nicolich-Henkin,
“Extreme model compression for on-device natural language un-
derstanding,” in Proc. Intl. Conf. Computational Linguistics: In-
dustry Track, Dec. 2020, pp. 160–171.

[12] A. Saade, A. Coucke, A. Caulier, J. Dureau, A. Ball, T. Bluche,
D. Leroy, C. Doumouro, T. Gisselbrecht, F. Caltagirone et al.,
“Spoken language understanding on the edge,” in Fifth Workshop
on Energy Efficient Machine Learning and Cognitive Computing-
NeurIPS Edition (EMC2-NIPS). IEEE, 2019, pp. 57–61.

[13] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “Mo-
bileBERT: a compact task-agnostic BERT for resource-limited
devices,” in Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, 2020, pp. 2158–2170.

[14] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a dis-
tilled version of bert: smaller, faster, cheaper and lighter,” arXiv
preprint arXiv:1910.01108, 2019.

[15] G. Aguilar, Y. Ling, Y. Zhang, B. Yao, X. Fan, and C. Guo,
“Knowledge distillation from internal representations,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 05, 2020, pp. 7350–7357.

[16] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang,
and Q. Liu, “TinyBERT: Distilling BERT for natural language
understanding,” in Findings of the Association for Computational
Linguistics: EMNLP, 2020, pp. 4163–4174.

[17] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and Q. Liu,
“Dynabert: Dynamic bert with adaptive width and depth,” in Ad-
vances in Neural Information Processing Systems, vol. 33, 2020,
pp. 9782–9793.

[18] W. Zhang, L. Hou, Y. Yin, L. Shang, X. Chen, X. Jiang, and
Q. Liu, “Ternarybert: Distillation-aware ultra-low bit bert,” in
Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2020, pp. 509–521.

[19] H. Bai, W. Zhang, L. Hou, L. Shang, J. Jin, X. Jiang, Q. Liu,
M. Lyu, and I. King, “Binarybert: Pushing the limit of bert quan-
tization,” in Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1:
Long Papers), 2020, pp. 4334–4348.

[20] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W. Ma-
honey, and K. Keutzer, “Q-bert: Hessian based ultra low precision
quantization of bert,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 05, 2020, pp. 8815–8821.

[21] H. Saghir, S. Choudhary, S. Eghbali, and C. Chung,
“Factorization-aware training of transformers for natural language
understanding on the edge,” in Interspeech, 2021.

[22] Y. Mao, Y. Wang, C. Wu, C. Zhang, Y. Wang, Q. Zhang, Y. Yang,
Y. Tong, and J. Bai, “LadaBERT: Lightweight adaptation of BERT
through hybrid model compression,” in Proceedings of the 28th
International Conference on Computational Linguistics, 2020, pp.
3225–3234.

[23] T. G. Kolda and B. W. Bader, “Tensor decompositions and appli-
cations,” SIAM Review, vol. 51, no. 3, pp. 455–500, Aug. 2009.

[24] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Ten-
sorizing neural networks,” in Advances in Neural Information
Processing Systems 28, 2015, pp. 442–450.

[25] C. Hawkins, X. Liu, and Z. Zhang, “Towards compact neural net-
works via end-to-end training: A bayesian tensor approach with
automatic rank determination,” SIAM Journal on Mathematics of
Data Science, vol. 4, no. 1, pp. 46–71, 2022.

[26] C. Hawkins and Z. Zhang, “Bayesian tensorized neural networks
with automatic rank selection,” Neurocomputing, vol. 453, pp.
172–180, 2021.

[27] A. Tjandra, S. Sakti, and S. Nakamura, “Compressing recurrent
neural network with tensor train,” in 2017 International Joint
Conference on Neural Networks (IJCNN), 2017, pp. 4451–4458.

[28] X. Ma, P. Zhang, S. Zhang, N. Duan, Y. Hou, M. Zhou, and
D. Song, “A tensorized transformer for language modeling,” Ad-
vances in neural information processing systems, vol. 32, 2019.

[29] K. Zhang, C. Hawkins, X. Zhang, C. Hao, and Z. Zhang, “On-
fpga training with ultra memory reduction: A low-precision tensor
method,” in ICLR Workshop on Hardware Aware Efficient Train-
ing, 2021.

[30] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington, “The atis
spoken language systems pilot corpus,” in Speech and Natural
Language: Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990.

[31] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
Bowman, “Glue: A multi-task benchmark and analysis plat-
form for natural language understanding,” in Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpret-
ing Neural Networks for NLP, 2018, pp. 353–355.

[32] Z. Liu, X. Yu, and Z. Zhang, “TT-PINN: a tensor-compressed
neural PDE solver for edge computing,” arXiv preprint
arXiv:2207.01751, 2022.

[33] S. Jain, A. Gural, M. Wu, and C. Dick, “Trained quantization
thresholds for accurate and efficient fixed-point inference of deep
neural networks,” in Proceedings of Machine Learning and Sys-
tems, vol. 2, 2020, pp. 112–128.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in International Conference on Learning Representa-
tions, 2014.

3296


