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Abstract
Auditory attention detection (AAD) methods based on elec-
troencephalography (EEG) could be used in neuro-steered hear-
ing devices to help hearing-loss people improve their hearing
ability. However, previous studies have mostly obtained EEG
data in laboratory settings which limits the practical application
of neuro-steered hearing devices. In this study, we employ a
common spatial pattern (CSP) algorithm to perform AAD using
EEG signals collected by a wireless mobile EEG system, from
real-life scenarios when people are walking and sitting. The
results show that the CSP method can achieve AAD accuracy
between 81.3% and 87.5% when using different decision win-
dows (1 s- 30 s), which is better than previous methods based
on linear mapping methods and convolutional neural networks
(CNN). This proves that the CSP algorithm can decode peo-
ple’s attention efficiently even outside the laboratory. Analysis
of EEG frequency bands shows that the δ and β bands have high
activity in attention tasks.
Index Terms: auditory attention detection, electroencephalog-
raphy, real-life scenarios, common spatial pattern, brain-
computer interface

1. Introduction
The latest Global Burden of Disease (GBD) study shows that
the burden of hearing loss due to aging is increasing over time,
and the global demand for assistive listening devices is grow-
ing [1]. Assistive listening devices, such as hearing aids and
cochlear implants, can restore hearing in hearing-loss patients.
Although these hearing devices have been improved over the
past few decades, including the use of more advanced speech
enhancement, directional beamforming, and noise suppression
technologies [2], the most advanced hearing devices still do not
work well in ”cocktail party” [3] scenarios when multiple peo-
ple are speaking at the same time. In such a scenario, normal-
hearing people can easily distinguish and track the sound source
of interest, while ignoring other sources. However, people with
hearing impairments often have difficulty participating in con-
versations. While advanced speech enhancement algorithms
can suppress background noise and enhance a speaker from a
mix of speech, they often do not know which speaker to en-
hance. Researchers proposed extracting attention-related in-
formation from the brain to determine the attended speaker
[4, 5, 6]. This problem is commonly known as Auditory At-
tention Detection (AAD). AAD algorithms can be integrated
with speech separation technology, miniature EEG sensors, and
intelligent gain systems in neuro-steered hearing devices [7] to
selectively amplify the attended source, which will improve the
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quality of life of hearing-loss people.
Previous AAD researches have been based on the physio-

logical basis that the brain can track speech envelope [4, 5]. En-
velope tracking is reflected as a phase-locking effect between
the neural signal and the speech envelope. Moreover, in multi-
speaker scenarios, envelope tracking is enhanced for attended
envelopes than unattended envelopes [4, 5, 8, 9]. Based on these
findings, some researchers perform AAD by stimulus recon-
struction (SR) methods [6, 10]. The SR methods construct a lin-
ear decoder to reconstruct speech envelopes from the recorded
brain signals, such as magnetoencephalography (MEG) or elec-
troencephalography (EEG). By comparing the correlation be-
tween the reconstructed envelopes and the actual envelopes of
different speakers, the speaker with a higher correlation is iden-
tified as the attended one. The detection accuracy of the linear
SR method is in the range of 82%-89% for a 60 s decision win-
dow. Such a long decision window is not suitable for realistic
applications in hearing devices. However, as the decision win-
dow length decreases, especially below 10 s, the detection ac-
curacy of the SR method will drop sharply [11]. Alickovic et al.
[12] used canonical correlation analysis (CCA) to improve the
accuracy of AAD. CCA algorithm finds the optimal linear trans-
form to apply to both the stimulus envelopes and neural signals
to reveal correlations between them. Using the 60 s decision
window, the detection accuracy reaches about 90% on different
datasets. Similarly, the accuracy performs poorly on shorter de-
cision windows, with accuracies of about 58% and 68% for 1 s
and 5 s [13].

SR and CCA are both linear mapping methods. To improve
detection accuracy, some researchers have proposed construct-
ing deep neural network (DNN) models that can extract non-
linear features to perform AAD. de Taillez et al. [14] used a
simple Fully Connected Network (FCN) model to reconstruct
the speech envelope from EEG signals and decode the attended
speaker by correlation analysis. The accuracy of AAD is about
96.7% and 67.8% for decision windows of 60 s and 2 s. In [15],
the authors proposed a convolutional neural network (CNN)
model that uses EEG data and speech envelope features as input
and implicitly computes the similarity between the EEG signals
and the corresponding speech envelopes. The AAD accuracy is
about 81% under a 10 s decision window. Cai et al. [16, 17]
used the attention mechanism in neural networks to construct
classification models with the accuracy of about 80%-88% for
2 s decision window and about 79%-84% for 1 s decision win-
dow. All the above studies employ clean speech envelopes as
the model input, but this is not reasonable for practical applica-
tions because only mixed speech signals are available. There-
fore, Vandecappelle et al. [18] used a CNN model to decode
the locus of auditory attention (left/right) without knowledge
of the speech envelopes, and the results show that the accuracy
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is about 80.8% for decision window of 1 s. A study used a
multi-task learning model, in which the direct AAD classifi-
cation task was assisted by the envelope reconstruction task to
perform AAD, and the results show an AAD accuracy of 82%
of 2 s decision window [19]. However, due to the small amount
of subjects’ data, deep learning methods have a high risk of
overfitting and the results may be poorer when changing differ-
ent subjects or datasets. On the contrary, the linear method has
higher robustness and stability and is computationally cheaper
[7].

What should be noted is that most of the current studies
have collected EEG data in the laboratory, which limits the fur-
ther application of AAD in daily environments. To address the
above-mentioned issues, we focus on the linear filtering method
common spatial patterns (CSP) to decode the directional focus
of attention and we use EEG data collected in real-life outdoor
scenarios instead of laboratory settings. The CSP method ex-
tracts spatial features based on transient lateralization effects in
the brain, which does not require envelope features and avoids
the need to compute correlations over longer time windows. It is
important to shorten the time of AAD for further application in
neuro-steered hearing devices. In addition, we conducted exper-
iments in different frequency bands to explore the contribution
of EEG frequency bands in AAD.

2. Methods
2.1. CSP filtering and feature extraction

CSP filtering is a spatial feature extraction method widely used
in the field of brain-computer interface (BCI), such as in motor
imagery [20, 21], emotion recognition [22], etc. In this study,
the CSP algorithm is used to perform AAD. As a binary classifi-
cation algorithm, the principle of CSP is to solve a set of optimal
spatial filters by diagonalizing matrices. The original signals are
projected through filters into a lower-dimensional subspace so
that the variance difference between the two classes of signals
is the largest. Suppose x(t) ∈ RN×1 denotes the EEG signal
of N channels at sampling point t = 1 . . . T . The x(t) belongs
to one of the two EEG classes C1 and C2 (e.g., attending left
speaker or right speaker). The goal of CSP is to design M spa-
tial filters W ∈ RN×M with the first M/2 filters maximizing
the output energy of class C1 and minimizing the output energy
of Class C2. The other M/2 filters maximize the output energy
of class C2 and minimize the output energy of class C1. For the
first filter w1, the objective function is shown below:

w1 = argmax
w

wTRC1w

wTRC2w
, (1)

where RC1 and RC2 are the sample covariance matrices of class
C1 and C2, as shown in equation (2) and (3).

RC1 =
1

|C1|
∑

t∈C1

x(t)xT(t) (2)

RC2 =
1

|C2|
∑

t∈C2

x(t)xT(t) (3)

|C1| and |C2| are the number of time points of classed C1 and
C2. By constraining wTRC2w = 1 in equation (1), the prob-
lem can be transformed into an extreme value problem in Equa-
tion (4) by the method of Lagrange multipliers.

L(λ,w) = wTRC1w − λ(wTRC2w − 1) (4)

Further transforming Equation (4) into:

R−1
C2

RC1w = λw, (5)

which corresponds to an eigenvalue problem. The filters w1

and wM can be obtained for the eigenvectors corresponding to
the maximum and minimum eigenvalues. The remaining filters
can be obtained for the eigenvectors corresponding to the sub-
sequent largest and smallest eigenvalues.

By using the CSP filter, the original EEG signal with T
sampling points X ∈ RN×T is first converted to Y ∈ RM×T

in the lower dimensional space. Typically, the log-energy of
each decision window is then calculated as feature input to the
classifier [13, 23]. The decision window size determines the
amount of EEG data used for AAD. Assuming that the decision
window contains Td sampling points, the feature vector f can
be expressed as:

f =



log(

∑Td
t=1 y1(t)

2)
...

log(
∑Td

t=1 yM (t)2)


 , (6)

where yi(t), i = 1, . . . ,M denotes the value of Y in the i-th
row and t-th column. Therefore, the feature vector f of each
decision window is an M-dimensional vector.

2.2. Classification

Feature vectors f can be classified with classifiers. In this study,
we use two classifiers, linear discriminant analysis (LDA) and
support vector machine (SVM), to detect the direction of atten-
tion and compare the performance between them. LDA is usu-
ally used in combination with CSP [23], and its classification
principle is very simple. It finds a projection vector v such that
similar samples are projected to be as close as possible and dis-
similar samples are as far away as possible [24]. The algorithm
finds the optimal vector v by the following solution:

v = S−1
W (µ2 − µ1), (7)

where SW is the within-class scatter matrix of feature f as
shown in Equation (8). µ1 and µ2 are the class feature means.

SW =
∑

f∈C1

(f − µ1)(f − µ1)
T +

∑

f∈C2

(f − µ2)(f − µ2)
T

(8)

After getting v, we can get the projection distance vTf based
on the input feature f . Then we can choose a bias to classify the
projection distance of the samples. The commonly used bias is
the average of the LDA projected class means:

b = −1

2
vT(µ1 + µ2). (9)

Therefore, the discriminant model is:

D(f) = vTf + b. (10)

f is classified into class C1 if D(f) > 0 and into class C2 if
D(f) < 0.

SVM has good performance in binary classification prob-
lems with small sample data. With the given training data, the
SVM will obtain a hyperplane as a decision surface that max-
imizes the interval between the two classes of samples. The
principle can be found in [25]. This study also uses SVM clas-
sifier to classify the extracted log-energy features. Here, two
different kernels in SVM are used: linear kernel and radial ba-
sis function (RBF) kernel.
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2.3. Baseline AAD models

In this study, we compare three different AAD methods, includ-
ing the classical SR method [6, 26], CCA method [12, 27], and a
binary classification method [18] using advanced CNN. The SR
method reconstructs the speech envelopes from the EEG signals
by constructing linear decoders. The correlations between the
reconstructed envelopes and the actual envelopes are calculated
to detect the subjects’ attention.

CCA combines a spatio-temporal backward model (i.e. SR,
mapping the EEG to the envelopes) and a temporal forward
model (mapping the envelopes to the EEG) to make their out-
put maximally correlated. CCA finds the best transformation
matrices W1 and W2 for EEG signals X1 and speech envelopes
X2. The columns of X1W1 are mutually uncorrelated, as are
the columns of X2W2, while pairs of columns taken from both
(“canonical correlate pairs” ) are maximally correlated [27].
The Pearson correlation coefficients between these pairs are de-
fined as the canonical correlation coefficients. The attended
speaker is identified by classifying the difference between the
canonical correlation coefficients of the competing speakers us-
ing a classifier.

The CNN binary classification method uses EEG as input
to predict the directional focus of subjects’ attention. It consists
of a convolutional layer with 5 kernels (kernel size: channels
× 17) and two fully connected (FC) layers. The convolutional
layer uses the rectified linear unit (ReLU) activation function
and average pooling. The two FC layers have 5 and 2 units,
respectively, followed by sigmoid activation. Loss is calculated
using the cross-entropy loss function.

3. Experiments
3.1. AAD Dataset

The dataset used in this study was collected by Straetmans et
al [26]. It contains EEG data of 20 subjects (24.2 ± 2.8 years;
16 female, 4 male). A two-competitive speaker paradigm was
employed for the experiment. Subjects were asked to focus on
one continuous speech stream while ignoring the other simul-
taneously presented speech stream. The stimuli were presented
after head-related transfer function filtering to simulate speech
from 45° to the left and 45° to the right of subjects. Speech stim-
uli were presented in six approximately five-minute-long trials.
Each stimulus consisted of a coherent short story from an audio
storybook narrated in German by a male speaker. Audio stim-
uli were presented through in-ear headphones. The side of the
to-be-attended stream alternated across subjects. Stimuli were
presented to subjects in random order.

The experiment was conducted in a public cafeteria. In
three of the trials, subjects were asked to walk at a comfort-
able speed along a predetermined route. In the remaining three
trials, subjects sat on chairs in front of a white wall. EEG was
recorded by a wireless 24-channel electrode cap and connected
to a direct current amplifier. EEG data were recorded at a sam-
pling rate of 250 Hz and channel Fz was used as the reference
electrode. The EEG signals were wirelessly transmitted to a
smartphone via Bluetooth. More dataset details can be found in
[26].

3.2. Data Preprocessing

The original EEG data were preprocessed using the EEGLAB
toolbox [28]. The data were firstly downsampled to 128 Hz
and band-pass filtered between 1 and 30 Hz. The artifact sub-

space reconstruction method [29] was applied to detect and
remove high-amplitude non-brain activity (produced by eye
blinks, muscle activity, sensor motion, etc.). The bad channels
with a correlation less than 0.8 with surrounding channels were
replaced by an estimate calculated using spherical spline inter-
polation [30] and all EEG channels were re-referenced to the
average reference. Finally, we performed independent compo-
nent analysis (ICA) on the EEG data to remove artifacts. As for
the speech envelopes needed in the SR and CCA methods, we
directly used the ones provided in the dataset without additional
processing.

3.3. Experiment Setup

For the training of the different AAD methods, for each trial of
all subjects, we randomly selected a continuous 20% length of
data as the test set and the rest data as the training set. There is
no overlap between them. We sliced different length samples (1
s, 2 s, 5 s, 10 s, 20 s, and 30 s) in each set, and also no overlap
between samples.

For the CSP method, to avoid overfitting, the sample co-
variance matrices in Equation (2) and Equation (3) are regular-
ized using ridge regression. Using the method in [31] which is
the recommended state-of-the-art covariance matrix estimator,
the regularization parameters are analytically determined. We
chose M = 6 filters as in [13], the first three filters maximiz-
ing the output energy of class C1 and minimizing the energy of
class C2, and the last three filters doing the opposite.

For the SR method, we used EEG data with time lags rang-
ing from 0 ms to 250 ms [6] to reconstruct the stimulus en-
velopes. In CCA, a forward lag of -250 ms was used on the
speech envelopes and a backward lag of 250 ms was used on
the EEG [12]. The differences between the first ten canonical
correlation coefficients of the competing speakers were selected
as the classifier’s inputs. Here, we used the LDA classifier to de-
code the attended speaker. In both methods, we downsampled
the EEG signals to the same 64 Hz as the envelopes provided
by the dataset when preprocessing the EEG. The EEG signals
and speech envelopes were again filtered between 1 and 8 Hz
which was determined to be optimal for linear mapping meth-
ods [6, 32].

We constructed the same CNN model as in [18]. During the
training, the batch size was set to 64 and we used the stochastic
gradient descent (SGD) optimizer with an initial learning rate
of 0.1 and a momentum of 0.9. The learning rate decayed to 0.5
times the original every five epochs. Regularization consisted
of weight decay with a value of 0.01. The early stopping strat-
egy was also employed if the loss on the validation set did not
decrease for ten consecutive epochs. In all methods, we per-
formed a 5-fold cross-validation on the training set to select the
optimal models and hyperparameters, then tested them on the
test set.

4. Results and Discussion
4.1. AAD performance of different methods

After applying CSP filtering, we used different classifiers to
detect the locus of auditory attention, including SVM with an
RBF kernel (CSP-SVM1), SVM with a linear kernel (CSP-
SVM2), and LDA classifier (CSP-LDA). We show the AAD
accuracy of the different methods in Table 1. The accuracy
of SR and CCA methods using linear mapping is low, espe-
cially on short decision windows, below 60% on the 1 s and
2 s decision windows. The methods using CSP filtering and
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Table 1: AAD performance using different methods. Boldface
indicated the best result.

Method Window(s)
1 2 5 10 20 30

SR [6] 54.9 56.9 59.8 62.7 68.4 74.4
CCA [12] 55.3 58.7 62.8 65.5 71.8 77.5
CNN [18] 80.9 82.3 83.1 83.2 83.6 84.6

CSP-SVM1 80.1 81.5 82.0 84.6 85.0 84.6
CSP-SVM2 81.3 83.1 84.8 87.5 87.8 87.5
CSP-LDA 80.8 83.5 86.1 87.6 87.2 87.5

Figure 1: AAD performance of different methods in sitting and
walking states.

CNN achieve accuracies of over 80% on 1 s window and the
CSP achieves the highest accuracy on all decision windows.
Paired t-tests were conducted to compare the performance of
different methods. The results of the significance test show
that the CSP-SVM2 and CSP-LDA significantly outperform the
CNN method (t = 3.471, p<0.05; t = 3.702, p<0.05), and
there is no significant difference between CSP-SVM1 and CNN
(t = 0.036, p = 0.973). This indicates that the linear CSP
filtering method meets or even exceeds the method using ad-
vanced neural networks. In addition, the accuracy of CSP-
SVM2 with the linear kernel is significantly better than that
of CSP-SVM1 with RBF kernel (t = 7.621, p<0.01). There
is also no significant difference between CSP-SVM2 and CSP-
LDA (t = 0.413, p = 0.696). However, LDA is faster to com-
pute and requires fewer computational resources compared to
SVM. Therefore, we used the LDA classifier in the subsequent
analysis.

We further tested the AAD accuracy of the four methods in
different states (sitting and walking), and the results are shown
in Figure 1. It is found that the AAD accuracy in the sitting
state is significantly higher than the accuracy in the walking
state among all methods. The CSP method reached 85.13% and
76.56% accuracies for the 1 s decision window in the sitting and
walking state, which shows that the CSP method can decode
subjects’ attention stably and accurately in real-life scenarios.

4.2. The impact of different frequency bands on AAD

To investigate the contribution of different frequency bands in
AAD, we further filtered the EEG data into different sub-bands,

Figure 2: Comparison of the contribution of EEG frequency
bands in different states.

i.e. δ band (1-4 Hz), θ band (4-8 Hz), α band (8-12 Hz), and
β band (12-30 Hz) to train the CSP filters and decode the di-
rectional focus of attention. The results are shown in Figure 2,
and it can be found that the δ band has the highest decoding
accuracy in the sitting state, but performs the worst in the walk-
ing state. The β band contributes the most in the walking state,
and the decoding accuracy even exceeds the sitting state in some
decision windows. We conjecture that selective attention during
sitting would work by increasing the gain of the low-frequency
EEG signal for the attended speech [8, 6]. In contrast, during
walking, subjects need to focus their attention more, the δ band
is suppressed and the β band dominates. Averaging the results
of sitting and walking reveals that the β band continues to con-
tribute the most in the AAD task, consistent with the results
obtained in previous studies [33, 34].

5. Conclusions
In this study, we used a CSP linear filtering method to detect the
directional focus of attention in real-life scenarios and achieved
a decoding accuracy of 81.3% on a 1 s decision window. We
distinguished the AAD accuracy of subjects in different be-
havioral states (sitting and walking). Although the accuracy
is slightly lower in the walking state, it still shows potential
for application. Experiments with sub-bands reveal significant
contributions from δ and β bands. Compared with traditional
linear mapping methods and advanced CNN models, the CSP
method is more accurate, responsive, robust, and requires fewer
computational resources, which lays the foundation for realis-
tic applications of neuro-steered hearing aids. Future research
can be extended to extract EEG signals with a higher signal-
to-noise ratio in living environments to improve AAD accuracy
and explore AAD in scenes with more speakers.
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