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Abstract
Automatic speech recognition (ASR) and its post-processing,
such as recognition error correction, are usually cascaded in
a pipeline ignoring their strong interconnection. Inspired by
the recent progress of leveraging text data to improve linguis-
tic modeling, we propose a Unified ASR and error Correction
framework (UAC), coupling speech recognition and error cor-
rection to capture richer semantic information for improving
the performance of speech recognition. The proposed frame-
work established interaction between speech and textual repre-
sentations via explicitly fusing their uni-modal embeddings in a
shared encoder. Additionally, the proposed framework is flex-
ible to operate in either synchronous or asynchronous variant
and could be equipped with modality and task tags enhancing
its adaptation to heterogeneous inputs. Experimental results on
accented and noisy speech datasets demonstrate that our method
effectively produces improved word error rate when compared
against the pipeline baselines.
Index Terms: Speech Recognition, Error Correction, Unified
Model, Interactive Training, Noisy and Accented Speech

1. Introduction
End-to-end Automatic Speech Recognition (ASR) [1, 2, 3, 4, 5]
that directly transcribes human speech into text sequence has
shown remarkable advance. However, ASR systems can make
errors, particularly when dealing with accents, noise, or com-
plex language. To address these issues, error correction tech-
niques [6, 7, 8] can be applied to improve the accuracy of ASR
output. In previous studies, ASR and ASR error correction were
usually modeled as two independent modules connected in a
cascade fashion, in which ASR first transcribes speech into a
noisy transcription, then the errors will be fixed by the correc-
tion module using linguistic or global information.

Recent studies have investigated directly unifying ASR and
recognition error correction in a single model, where ASR
and error correction are tackled simultaneously. Existing ap-
proaches can be categorized into the three: a) Mask-CTC. These
methods [9, 10, 11] first generate CTC-based ASR hypothe-
sis and low-confidence tokens are masked based on the CTC
probabilities, then masked tokens are iteratively refined condi-
tioning on the other unmasked tokens based on the iterative re-
finement decoding [12]. The models are trained with the joint
CTC and mask-predict objectives. b) Stacked-ASR-LM. These
methods [13, 14] straightforward incorporate pre-trained acous-
tic encoder and linguistic decoder, i.e., BERT as error correction
model in an end-to-end framework. c) Text-Supervision-ASR.
These methods [15, 16] utilize knowledge distillation based
language model integration for ASR. The pre-trained language
model transfers knowledge to ASR model.

On the one hand, the encoder-decoder architecture [17, 18]
used in a large variety of sequence-to-sequence transformation
tasks, including ASR [19] and error correction [20, 21] has
proven to be a powerful and flexible approach. On the other
hand, recent studies [22, 23, 24, 25] have shown the effective-
ness of using text data to improve linguistic modeling ability
in speech-to-text tasks. [23, 24] focus on improving speech-to-
text via joint-training a speech model with auxiliary text-based
tasks. [25] leverages large-scale unlabeled speech and text data
to pre-train a common encoder-decoder model, further support-
ing various spoken language processing tasks across different
modalities. Inspired by recent advances jointly training between
speech and text and architecture similarity between ASR and er-
ror correction tasks, we propose to Unify ASR and Correction
tasks in a single framework by sharing a common conditional
language model, namely UAC, in this work. The proposed
UAC framework contains two modality-specific embeddings, a
modality-agnostic shared encoder and a shared decoder. The in-
put speech and text are embedded into modality-specific space
with two embeddings and are converted to shared space with a
shared encoder, from which the decoder generates text output.
Specifically, we design two variants, synchronous and asyn-
chronous models, based on different interactions of speech and
text embeddings. The synchronous model focuses on the joint
modeling of paired speech-text representations, while the asyn-
chronous model focuses on progressive training for ASR and er-
ror correction tasks. We verify the effectiveness of the proposed
framework in both restricted and unrestricted settings. Experi-
ments show the proposed system can effectively reduce word
error rate (WER) for both ASR and correction tasks. In addi-
tion, our pre-training strategies result in additional reductions in
WER compared to the same system when trained from scratch.

2. Methodology
2.1. Unified ASR and Correction Framework

As shown in Figure 1(a), the framework is fed with speech and
text as the input and generates the corresponding text output,
which consists of four main components: speech embedding,
text embedding, shared encoder and decoder. These compo-
nents are all transformer-based sub-structures.

The speech embedding takes the 80-channel log Mel-filter
bank feature XT×80

a as the audio input, where T is the input au-
dio length and produces context-aware features ET×D

a , where
D is the model dimension. The text embedding converts text
input to contextualized features. Specifically, it first transforms
a sequence of token indexes XT ′

t into a sequence of embedding
vectors via the embedding layer, where T ′ is the tokens length
of input text and then feeds them into stacks of Transformer en-
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Figure 1: The diagram of unified ASR and correction framework. (a) Both variants consist of four common components: speech
embedding, text embedding, shared encoder and decoder. (b) Synchronous model. (c) Asynchronous model.

coder layers to generate context-aware features ET ′×D
t . The

shared encoder receives speech and text representations syn-
chronously or asynchronously to produce unified semantic rep-
resentations. The decoder uses input representations from the
shared encoder to generate output tokens in an auto-regressive
way.

According to the data interaction mode fed into the shared
encoder, we design two variant models based on the intuition of
jointly training of recognition and correction tasks.
Synchronous Model As shown in Figure 1(b), the synchronous
model takes speech-text pairs as input, where the text is derived
from from CTC predictions of speech embedding when train-
ing. The latent features from both speech and text embeddings
are concatenated to get fused features E(T+T ′)×D

s , which are
then fed into the shared encoder. This approach allows for bet-
ter modeling of the correlations between the two modalities.
Asynchronous Model As shown in Figure 1(c), the asyn-
chronous model is trained by alternately sampling speech and
text data with probability, which relaxes the constraints of
paired speech-text input. If speech input is selected, the ASR
task will be performed. If text input is selected, the error cor-
rection task will be performed. The noisy text input is either
from ASR predictions or from noisy ground truth.

2.2. Training Strategy

The UAC framework is trained in both restricted and unre-
stricted settings. In the restricted setting, the framework is
trained from scratch with target datasets. In the unrestricted
setting, the framework is pre-trained with large-scale labeled
datasets and then fine-tuned with downstream target datasets.
Synchronous Model The synchronous model is trained in the
same way in restricted and unrestricted settings. The training
loss of the synchronous model can be formulated as:

L = αLasr + γLctc (1)

where Lasr , Lctc are cross-entropy and CTC loss for ASR task
respectively. The weight α, γ are set to 0.7, 0.3 respectively
Asynchronous Model In unrestricted setting, the asyn-
chronous model is first pre-trained by alternately sampling
speech and text data with probability, then the model is fine-
tuned by sequentially performing ASR and error correction

tasks, in which ASR predictions are used as input for error cor-
rection task. In restricted setting, the training strategy is same
as that of the fine-tuning stage in unrestricted setting.

Due to the difference in granularity and data size between
speech and text data, uniform sampling is not the optimal strat-
egy for the asynchronous model. In this paper, we use a sam-
pling method similar to that of SpeechT51 and the details of
speech text pre-training by probability sampling are shown in
Algorithm 1.

The overall loss of the asynchronous model can be formu-
lated as:

L = αLasr + βLcorrection + γLctc (2)

where Lcorrection is cross-entropy loss for correction task. The
weight α, β, γ are set to 0.5, 0.5, 0.3 respectively.

2.3. Modality and Task Tags

Since the feature distribution of various modalities is heteroge-
neous, we leverage modality and task tags as priori informa-
tion to demarcate the boundary of fused features and indicate
the modality and task type currently being processed for better
modeling.

To this end, we incorporate the modality embedding to the
feature embedding for the synchronous model through a sum-
mation operation, as demonstrated in Figure 1(b). For the asyn-
chronous model, before feeding the feature embedding to the
shared encoder, the modality tag <spc>/<txt> are appended
to the starting position of the embedding, as demonstrated in
Figure 1(c). Meanwhile, the task tag <asr>/<corr> are added
to the beginning of the decoder input.

2.4. Differences with Existing Methods

While UAC bears some similarities to previous unifying ASR
and correction studies [9, 13, 15], it differs in several key as-
pects. Firstly, UAC focuses on utilizing a unified model archi-
tecture that incorporates a shared conditional language model.
This unique design allows us to explore the potential mutual

1https://github.com/microsoft/SpeechT5/blob/main/SpeechT5/speec
ht5/data/multitask dataset.py
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Table 1: Word error rate (WER, %) results on noisy and accented English datasets in both restricted and unrestricted settings. En-De
ASR & Correction represents a cascade model, which first uses the encoder-decoder ASR model to recognize text, and then uses the
Transformer error correction model to refine the text. FairseqS2T represents the Speech-Transformer model implemented by Fairseq,
which is pre-trained on LIBRISPEECH dataset and fine-tuned on cross-domain datasets.

Setting Method
Noisy Accented

Recognition Correction Recognition Correction
test test-other test test-other test test

Restricted
En-De ASR & Correction 30.00 51.48 25.56 36.88 9.93 9.67

Synchronous (Ours) 29.86 50.04 18.53 33.27 16.44 8.27
Asynchronous (Ours) 18.87 33.02 17.04 27.93 8.89 7.51

Unrestricted
FairseqS2T 12.09 22.65 - - 8.36 -

Synchronous (Ours) 24.69 35.16 13.37 21.54 14.57 6.07
Asynchronous (Ours) 11.32 20.54 10.42 18.73 6.47 5.42

improvement of both ASR and text correction. This inspiration
sets our approach apart from other methods. Secondly, UAC
emphasizes maintaining a high degree of flexibility by consid-
ering the independence and association of the model compo-
nents. After completing the model training, we have the option
to either separate the ASR model and the error correction model
from the unified model or utilize the unified model directly for
recognition-refinement tasks. This trade-off enables us to strike
a balance between efficiency and accuracy based on the specific
requirements of the application.

3. Experiments
3.1. Datasets

Noisy Speech and Text Generation We built up the noisy
speech dataset2 by uniformly sampling a noise clip from DNS
Challenge 2020 noise dataset [26] and adding it to 100 hours
of clean subset from LIBRISPEECH. The SNR levels are sam-
pled from a uniform distribution between 0dB, 5dB, 10dB,
15dB, 20dB. Following the text interrupting approach in BART
[27, 25], the noisy text is generated3, where the synthesized
noisy text data is used for pre-training.
Accented Speech AESRC2020 [28] is used to evaluate the per-
formance of the proposed approach. AESRC2020 is a 164-hour
accented English speech corpus that includes recordings from
non-native speakers of English. Since no labeled test set is pub-
licly released, we split a subset of about 10% from the training
speech as the test set.
ASR We conduct experiments on 960 hours of LIBRISPEECH
during pre-training in unrestricted setting. The noisy and ac-
cented ASR data are used to measure the performance of the
model in cross-domain scenarios.
Error Correction Text transcription in LIBRISPEECH dataset
and co-training text data for language modeling coming with the
LIBRISPEECH dataset are used during pre-training. The one-
best hypothesis from ASR model is used as input to the error
correction task during fine-tuning.

Note that all models evaluated are by default trained in re-
stricted setting unless otherwise stated.

3.2. Experimental Setup

The proposed encoder-decoder architecture follows the Trans-
former sub-structures, which contains 12-layer speech embed-
ding, 3-layer text embedding with embedding layer, 3-layer

2https://github.com/microsoft/DNS-Challenge
3https://github.com/microsoft/SpeechT5/tree/main/SpeechT5/speecht5/data

shared encoder and 6-layer decoder. Due to the constraints of
computing resources, each layer comprises 256 hidden units, 4
attention heads, and 2,048 feed-forward size.

Algorithm 1 Speech-Text Sampling Pre-training Algorithm
Input: Speech training data Ds, Text training data Dt

Initialize: Speech embedding θs, Text embedding θt,
Shared encoder θshare, Decoder θd

1: M = Sum(Ds) ▷ sum of speech frames
2: N = Sum(Dt) ▷ sum of text tokens
3: Ratio = M/(M +N)
4: while Training do
5: SpeechTag, TextTag = False,False
6: r ∼ U(0, 1)
7: if r < Ratio then
8: SpeechTag = True
9: else TextTag = True

10: end if
11: if SpeechTag then ▷ ASR task
12: (Xs, Ys)←− Next(Ds)
13: Zasr, Zctc = f(Xs; [θs, θshare, θd])
14: Lasr = CrossEntropy(Zasr, Ys)
15: Lctc = CTC(Zctc, Ys)
16: else if TextTag then ▷ Correction task
17: (Xt, Yt)←− Next(Dt)
18: Z = f(Xs; [θt, θshare, θd])
19: Lcorr = CrossEntropy(Z, Yt)
20: end if
21: Update model with Eq. 2
22: end while
23: return θs, θt, θshare, θd

Input speech is represented as 80-D log Mel-filter bank co-
efficients computed every 10ms with a 25ms window. For re-
ducing the computational cost, the input speech features are
processed by two convolutional layers, which have a stride
of 2×2 and downsample the sequence by a factor of 2. The
SpecAugment [29] data augmentation with the LB policy is ap-
plied. We tokenize training text data using subword units with
a vocabulary size of 10k, learned from SentencePiece.

All experiments are implemented based on the Fairseq4

toolkit. We use the Adam optimizer with β1 = 0.9, β2 = 0.997
and adopt inverse square root learning schedule. We apply a
dropout rate of 0.1 and label smoothing of 0.1 for regulariza-
tion. In a restricted setting, we train for atotal of 80k steps. In
an unrestricted setting, we train 400k steps for pre-training and

4https://github.com/facebookresearch/fairseq
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80k steps for fine-tuning.

3.3. Experimental Results

We compare our UAC framework with Transformer baseline
systems in both restricted and unrestricted settings. The main
results on noisy and accented English datasets are summarized
in Table 1. The results show that both proposed variant models
give an improvement over the baseline and compared models
in terms of WER, which proves the effectiveness of combining
recognition and correction tasks in a unified framework under
noisy and accented speech conditions.

In addition, we find some other interesting points by com-
paring the results. First, the recognition result of the asyn-
chronous model outperforms the encoder-decoder based ASR
model, which indicates that the auxiliary error correction task
benefits the primary ASR task within the multitask learning
framework. Second, the final result of the synchronous model
outperforms the encoder-decoder based ASR model. This
proves that paired speech-text representation helps to preserve
more information from different input modalities and thus boost
the performance. Third, the asynchronous model surpasses
the synchronous model. One possible reason is that the asyn-
chronous model reuses conditional language components in se-
quential ASR recognition and error correction tasks while the
synchronous model suffers from terrible CTC prediction re-
sults in noisy and accented speech conditions without language
model, which implies the importance of language model plays
in noisy and accented speech recognition tasks. Finally, pro-
posed UAC framework outperforms the cascaded model with
the same amount of data, which demonstrates the effectiveness
of the proposed model to a certain extent.

3.4. Effects of the Number of Shared Encoder Layers

We explore the effect of the number of shared encoder layers on
the synthesized noisy dataset. For a fair comparison, the total
number of layers of the shared encoder and text embedding is
unchanged to eliminate the interference of model parameters on
model performance.

Table 2: WER(%) results on the noisy test set with different num-
bers of shared layers.

Model Shared Layers Recognition Correction

Synchronous
0 30.03 18.90
3 29.86 18.53
6 29.87 18.55

Asynchronous
0 18.75 17.33
3 18.87 17.04
6 18.78 16.91

Table 2 shows the both synchrinous and asynchronous mod-
els benefit from using a shared encoder. However, increasing
the number of shared encoder layers (e.g., from 3 to 6) might
not necessarily introduce further improvement.

3.5. Effects of Extra Text Training

We investigate the effect of extra text in an unrestricted setting.
For the synchronous model, we first train the correction mod-
ules with additional text data, then continue to train the joint
model with large-scale paired speech-text data, and finally fine-
tune the pre-trained model. In the experiment, we initialize the
correction modules with pre-trained BART model parameters
to simulate the extra text data training. For the synchronous

model, we use LIBRISPEECH language dataset as extra text
data.

Table 3: Effects of extra text training on noisy and accented test
sets in terms of WER(%).

Model Extra Text Recognition Correction

Noisy Speech

Synchronous Yes 29.44 18.40
No 29.86 18.53

Asynchronous Yes 18.04 16.12
No 18.87 17.04

Accented Speech

Synchronous Yes 9.05 5.87
No 9.57 6.07

Asynchronous Yes 6.16 5.08
No 6.47 5.42

Table 4: Effects of modality and task tags on the accented test
set in terms of WER(%).

Model Use Tags Recognition Correction

Synchronous Yes 16.44 8.27
No 16.46 8.31

Asynchronous Yes 8.89 7.51
No 8.96 7.59

Table 3 shows the results on noisy and accented test sets.
After the extra single text data is used, the final performance is
further improved, which is intuitive. Compared with the asyn-
chronous model, the improvement of the synchronous model
is limited. An important reason is that the three-stage training
weakens the gain brought by the extra text.

3.6. Effects of Modality and Task Tags

We conduct experiments on accented test set to verify the ef-
fectiveness of modality and task tags and the results are shown
in Table 4. The results show that the addition of tags further
improves the accuracy of the recognition and error correction
task, which verifies the effectiveness of the tags for the unified
multi-task framework.

4. Conclusion and Future work
In this paper, we present a unified framework by combining
ASR and error correction tasks, whose design follows struc-
ture similarity and task relatedness. Based on design intu-
ition, we design two variant models: the synchronous model
and the asynchronous model, where the synchronous model
fuses speech-text pairs for synchronous training, and the asyn-
chronous model is interactively trained between ASR and er-
ror correction tasks. Experiment results demonstrate the effec-
tiveness of the proposed framework in cross-domain scenarios.
In future work, we will utilize pre-trained acoustic models and
pre-trained language models to achieve better performance via
continuing pre-training.
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