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Abstract
This paper presents a parameter-efficient learning (PEL) to
develop a low-resource accent adaptation for text-to-speech
(TTS). A resource-efficient adaptation from a frozen pre-trained
TTS model is developed by using only 1.2% to 0.8% of origi-
nal trainable parameters to achieve competitive performance in
voice synthesis. Motivated by a theoretical foundation of opti-
mal transport (OT), this study carries out PEL for TTS where an
auxiliary unsupervised loss based on OT is introduced to max-
imize a difference between the pre-trained source domain and
the (unseen) target domain, in addition to its supervised train-
ing loss. Further, we leverage upon this unsupervised loss re-
finement to boost system performance via either sliced Wasser-
stein distance or maximum mean discrepancy. The merit of this
work is demonstrated by fulfilling PEL solutions based on resid-
ual adapter learning, and model reprogramming when evaluat-
ing the Mandarin accent adaptation. Experiment results show
that the proposed methods can achieve competitive naturalness
with parameter-efficient decoder fine-tuning, and the auxiliary
unsupervised loss improves model performance empirically.
Index Terms: Parameter-efficient learning, optimal transport,
test-to-speech, accent adaptation, pre-trained model

1. Introduction
Large-scaled pre-trained acoustic models [1, 2] and language
models [3] or so-called foundation models [4] have been emerg-
ing due to the rapid development of efficient computation hard-
ware and self-supervised learning. Recently, the generative dif-
fusion models [5, 6, 7] have achieved dominant performance
across different tasks. Either pre-trained foundation models
or generative diffusion models require powerful computation
hardware and long training time. Therefore, parameter-efficient
adaptation plays an important role in many practical applica-
tions when utilizing the pre-trained model for a low-resource
downstream task. The approaches such as prompt tuning [8],
residual adapter [9] or model reprogramming [10, 11, 12] have
been developed for parameter-efficient learning (PEL) [13]
where several benefits are commonly pursued. First, the train-
ing time is reduced by freezing the backbone model and only
adapting the domain-specific parameters. Second, the general-
ization to a low-resource and out-of-distribution target domain
is improved. In [11, 14], fine-tuning the whole model was
seen as a way to distort the pre-trained features for an out-of-
distribution target task. The way of updating a small portion of a
pre-trained model or freezing an entire backbone model and up-
dating only the extra weights was illustrated as the lightweight
fine-tuning which generalized the representation under distribu-
tion shift. Third, the backbone model is reused [8, 15] for those
methods which only add on additional weights, arrange task-

specific prompts or reprogram input layers for different tasks.
Several works were recently proposed to introduce the adapter
learning and model reprogramming in speech-related applica-
tions. In [16], a pre-trained English automatic speech recog-
nition (ASR) model was repurposed as a multilingual ASR by
adding reprogramming layers. In [17], residual adapters were
added to a backbone model for speaker adaptation in a text-to-
speech (TTS), ensuring the naturalness of synthesized speech
through the use of only a few controllable parameters.

Meanwhile, accent adaptation [18, 19, 20] is seen as a prac-
tical issue for TTS system which is handled to develop the gen-
erative model for speech synthesis in presence of pronunciation
variations or accent shifts due to different speakers in differ-
ent ages coming from different regions. For instance, accent
adaptation is one essential step when conducting the English ac-
cent transfer among different countries including United States,
United Kingdom and Australia. For Chinese spoken language,
similar challenges [21] have been reported due to differences in
hearing effects between Mainland Chinese accent (zh-CN) and
Taiwanese Mandarin accent (zh-TW) on voice quality and un-
derstanding. One important task in TTS is to adapt additional
layers and weights for accent adaptation based on the frozen
pre-trained TTS backbone. This study addresses the emerging
challenges [21] of data sparseness for Taiwanese Mandarin ac-
cent in accent adaptation by utilizing a pre-trained TTS model
trained on a large corpus of Chinese speech with Mainland
China accent. A direct way to tackle this problem is to fine-
tune the whole pre-trained model [22], but the computation cost
is still high due to a large number of parameters. Accordingly,
this paper presents and investigates several parameter-efficient
methods to deal with accent adaptation for low-resource spo-
ken language. The first study on model reprogramming scheme
to TTS is explored. An additional scheme of learning resid-
ual adapter [23, 17] for speaker adaptation in TTS is evaluated.
The main contributions of this paper are summarized as fol-
lows. First, two PEL methods to accent adaptation by utilizing
pre-trained TTS model were presented. Second, a novel PEL
based on model reprogramming for accent adaptation is pro-
posed. The input-based reprogramming for TTS is exploited
and can be applied for model re-deployment [24]. Third, a
model regularization based on optimal transport is developed to
improve TTS performance by characterizing the latent feature
distance.

2. Background Survey
2.1. TTS by Utilizing Pre-Trained Model

Many prior works on speaker adaptation [17, 18] or accent
adaptation [22] were developed by conducting knowledge trans-
fer based on a pretrained multi-speaker TTS model. A sim-
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ple method is to fine-tune or adapt the entire pretrained model
to a target speaker. This method is feasible to synthesize the
speech signals with high naturalness and speaker characteris-
tics. However, the drawback [13] is the scaling issue which
causes high computation for adapting so many parameters. In
[25], AdaSpeech was proposed as a parameter-efficient TTS for
a new speaker by additionally performing the conditional layer
normalization. In [17], the residual adapter scheme was shown
as an effective approach to speaker adaptation by adapting the
prosody features of a TTS model from source to target domains
through the adapter layers. This study addresses the parameter-
efficient methods, e.g. adapter learning, for accent adaptation
and further explores a new PEL method based on model repro-
gramming where the Chinese accent adaptation is implemented.

2.2. Parameter-Efficient Learning

There are three major approaches to parameter-efficient learn-
ing which are input prompting, adapter learning and model re-
programming. In [3], the generative pre-trained transformer-
3 (GPT-3), was proposed by adopting the prompt and guid-
ing the learned model to generate the related response. In
[8, 26], the bidirectional encoder representations from trans-
formers (BERT) was utilized to perform domain adaptation.
By concatenating the trainable task-specific prompts with input
text sequence, the gap between pre-training tasks and down-
stream tasks was bridged. In [17, 27, 28], the sub-module of
transformer layer using adapter or residual adapter was added
and adjusted so as to obtain remarkable performance for a tar-
get task. In addition, the model reprogramming or adversar-
ial reprogramming was proposed to reprogram input data by
introducing trainable layers which attempted to translate new
inputs into source domain so that the pre-trained model could
be used directly. For example, in [11], Voice2Series was pro-
posed to transform an input time series so that a large acous-
tic model was utilized to obtain competitive results on various
series classification tasks. This paper is motivated to develop
various parameter-efficient methods for accent adaptation with
low-resource setting in a TTS system.

3. Low-Resource Accent Adaptation
Considering the success of parameter-efficient learning in dif-
ferent tasks and domains, this paper presents the parameter-
efficient learning and model regularization for low-resource ac-
cent adaptation in a TTS system where the backbone model
based on a conformer-fastspeech2 [29] model from ESP-
Net [30] is utilized. System architecture is shown in Figure
1. The speech spectrogram from phoneme input is synthesized
through a stack of components consisting of phoneme embed-
ding, encoder, variance adapter and Mel decoder where the ad-
ditional position embeddings and x-vectors [31] are added dur-
ing stack processing. Our proposed model consists of two parts:
parameter learning and parameter regularization, which will be
individually addressed in the following sections.

3.1. Parameter-Efficient Accent Adaptation

First, parameter-efficient learning is performed by reshaping the
architecture of Mel decoder through three types of layer while
the remaining components in TTS are frozen. The input space
and latent space of Mel decoder are re-organized by merging
with input reprogramming layer, latent adapter layer and latent
reprogramming layer which are shown in Figure 1. The num-
ber of controllable parameters due to the add-on layers is very

Figure 1: System architecture for parameter-efficient learning
by using conformer-fastspeech2 backbone. Three kinds of lay-
ers are configured in input and latent spaces of Mel decoder.

limited relative to the whole model architecture. Briefly speak-
ing, input reprogramming layer aims to reduce the cost of model
re-deployment based on a kind of prompt scheme. The latent re-
programming layer is implemented as separate reprogramming
layer which is appended in latent space of Mel decoder.

3.1.1. Input reprogramming layer

In [11, 32], input reprogramming was first proposed to imple-
ment a prompt tuning scheme to redeploy endpoint models for
speech processing tasks in recent works [24, 15]. Tradition-
ally, it is popular to carry out domain adaptation by fine-tuning
the entire model or only a portion of model. Using the fine-
tuning approach, the pre-trained model should be re-tuned ev-
ery time when a new task is present. The issue of computation
cost is severe when a large-scaled pre-trained model such as
CLIP [33], GPT-3 [3] or Wav2Vec2 [34] is utilized. Parameter-
efficient learning is required to handle this issue [15, 24]. This
study introduces the input reprogramming layer in conjunction
with Mel decoder of a frozen TTS model. This treatment aims
to address the challenge of re-deploying accent voices under a
fixed Mel decoder. Such a composite layer is seen as a trainable
feature extractor Hθ which is stacked with a linear feedforward
layer and a 1-dimensional convolutional layer. The input repro-
gramming function Rθ with the decoder input z is yielded as a
residual calculation by Rθ(z) = z+Hθ(z) = z′ where z′ rep-
resents the reprogrammed input of decoder that is fed into the
pre-trained endpoint model, and θ is the only trainable param-
eter for entire TTS model, which is updated during the back-
propagation process.

3.1.2. Latent adapter layer

Next, a frozen TTS backbone model is utilized by configuring
the adapter layer or reprogramming layer in the latent space of
Mel-scale decoder where the outputs are finally used to syn-
thesize the speech spectrogram. Basically, the adapter layer or
module is formed of one linear down layer and one linear up
layer which are used to extract the bottleneck features, and the
residual connection performs additive feature learning to en-
gage knowledge of adapter input. There are N blocks of de-
coder layer and adapter layer which are stacked to form a Mel
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Figure 2: Latent feature distance between two accents be-
fore/after reprogramming via SWD (left) and MMD (right).

decoder. Only the adapter layer is fine-tuned, the other layers
are frozen.

3.1.3. Latent reprogramming layer

Another type of latent configuration of Mel decoder is to add on
reprogramming layer in each block to enrich the optimization
procedure of a TTS model. Given a frozen decoder layer F i

Θ

in each block i, the latent features hi of i-the decoder layer is
calculated and then fed into the latent reprogramming layer Ri

θ

or latent adapter layer Ai
θ to perform feature reprogramming or

adaptation, respectively, instead of taking latent feature hi as
the input of (i+ 1)-th decoder layer

Ri
θ(h

i)︸ ︷︷ ︸
i-th latent reprogram

→ (hi)′ → F i+1
Θ ((hi)′)︸ ︷︷ ︸

i-th frozen decoder with trainable feature

Ai
θ(h

i)︸ ︷︷ ︸
i-th latent adapter

→ (hi)′ → F i+1
Θ ((hi)′)︸ ︷︷ ︸

i-th frozen decoder with trainable feature

(1)

where Θ represents a set of non-trainable parameters across de-
coder layers, and θi denotes the i-th trainable feature generator
for PEL using either reprogramming layer or adapter layer.

3.2. Parameter Regularized Accent Adaptation

In addition to parameter-efficient learning for accent adaptation
to a low-resource target domain, this study further introduces
the parameter regularization scheme in domain adaptation. In
particular, an auxiliary unsupervised loss based on the optimal
transport [35] is merged for model regularization. This con-
sideration is based on an observation about the distance of la-
tent features between source (Mainland Chinese) and target ac-
cents (Taiwanese Mandarin). As shown in Figure 2, the latent
feature distance before and after the reprogramming layer with
two metrics, sliced Wasserstein distance (SWD) [35] and maxi-
mum mean discrepancy (MMD) [36], are illustrated. The latent
features in accent adaptation are evaluated. Both metrics are
calculated to measure the discrepancy between two probability
distributions for variables u and v. These measures belong to
the family of integral probability metric (IPM) [37] which mea-
sures the optimal transport in a form of

dF (µ, ν) = sup
f∈F

(∫
fdµ−

∫
fdν

)
(2)

where F is a class of measurement functions. As referred in
[38], if f is selected as a 1-Lipschitz function, SWD is a simple
realization of IPM in Eq. (2) based on Euclidean distance. If
f is set as a kernel function, MMD is a realization of IPM. In
this evaluation, it is found that both SWD and MMD using the
proposed PEL are increased after latent reprogramming along

learning epochs. There is a big increase after 20 epochs. MMD
converges better than SWD.

To highlight this optimal transport phenomenon during
fine-tuning, a regularization term is designed and merged as
auxiliary training objective to measure the distance between the
source feature hs and the reprogrammed target feature Rθ(ht)

Lot(ht, hs; θ) = −d (Rθ(ht), hs) (3)

where Rθ acts as either input reprogramming layer or latent
reprogramming layer, and d is distance metric either SWD or
MMD. For the adapter, the same distance in Eq. (3) is used
but the adaptation function Aθ is adopted. As a result, the
total learning objective consisting of regression loss for syn-
thesized speech and optimal transport due to reprogramming is
constructed for parameter regularized learning

L = Lmae(ŷ,y; θ) + Lot(ht, hs; θ) (4)

where Lmae represents the mean absolute error (MAE) between
the predicted spectrogram ŷ from Mel decoder and the ground-
truth spectrogram y from training speech. This MAE loss is
seen as the supervised regression loss. Importantly, the optimal
transport loss Lot is calculated as the negative distance measure,
namely, a penalized regularization [36] is introduced to assure
separation between the source feature hs and the reprogrammed
target feature Rθ(ht) or adapted target feature Aθ(ht). In the
implementation, a warm-up strategy [39] was performed by
gradually increasing the coefficient of the regularization term
from zero at the start of training. This treatment helps to stabi-
lize the model. Algorithm 1 shows the training procedure with
optimal transport as a penalized regularization.

Algorithm 1 Optimal transport regularized training procedure

Input: fine-tuning data {x,y}, source domain feature hs, total
training steps T , hyperparameter K

Output: parameter θ of PEL method
while train steps less than T do

calculate outputs ŷ and ht given inputs x
if train steps less than K then

compute loss L = Lmae(ŷ,y; θ)
else

compute loss L = Lmae(ŷ,y; θ)− Lot(ht, hs; θ)

update parameter θ using ∇θL
return θ

4. Experiments
4.1. Experimental settings

We chose the AISHELL3 [40] as pretrained dataset, which con-
sists of around 85 hours of emotion-neutral recordings delivered
by 218 native Chinese mandarin speakers, to build a wide-range
source accent acoustic model. Our purpose is to leverage the
power of the pre-trained model and perform the accent trans-
fer from zh-CN to zh-TW. To make sure the voice is clean and
suitable for TTS, we collect a 40-minute-long Taiwanese ac-
cent corpus with only one female speaker in a quiet space. The
recording transcripts are including jokes, movie introductions,
and travel guides.

For model configuration, We employ the same pre-trained
Conformer-Fastspeech2 backbone which was trained on the
AISHELL3 dataset and further use the x-vector [41] as speaker
embedding to leverage the better speaker attribute. The en-
tire model had 71M parameters including 4 conformer layers
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Table 1: Objective and Subjective evaluation under different
PEL methods with SWD/MMD auxiliary loss, including input
reprogram (IR), latent reprogram (LR), and latent adapter (LA).

Method MCD (↓) Naturalness (↑) AQ (↑) Params
Ground Truth N/A 4.83 ± 0.38 N/A N/A
FT 7.64 ± 0.76 4.40 ± 0.70 4.55 ± 0.71 100%
Decoder FT 8.06 ± 0.87 4.00 ± 0.95 4.17 ± 0.92 46.8%

IR 8.07 ± 0.82 3.65 ± 0.85 3.85 ± 0.82
0.6%IR w/ SWD 8.03 ± 0.65 3.70 ± 0.81 3.98 ± 0.85

IR w/ MMD 8.03 ± 0.69 3.70 ± 0.84 3.98 ± 0.88

LA 7.99 ± 0.89 3.77 ± 0.91 4.03 ± 0.76
0.8%LA w/ SWD 7.93 ± 0.78 3.88 ± 0.87 4.12 ± 0.81

LA w/ MMD 7.90 ± 0.81 3.73 ± 0.84 4.05 ± 0.86

IR+LR 7.86 ± 0.83 3.67 ± 0.91 3.92 ± 0.88
1.2%IR+LR w/ SWD 7.81 ± 0.80 3.50 ± 0.97 3.90 ± 1.09

IR+LR w/ MMD 7.79 ± 0.78 3.75 ± 0.80 3.95 ± 0.89

in both decoder and encoder which the latent feature dimen-
sion is set to 384, and it was trained using the Adam optimizer
with a Transformer learning rate schedule for 500k steps. We
further use the parallel-wavegan [42] as vocoder to transform
mel feature to the waveform. For PEL methods settings, we set
the bottleneck dimension size r = 96 of the adapter and inserted
them between 4 conformer-decoder layers, and keep the settings
consistent for input reprogramming and latent reprogramming,
where the Conv-1D feature extractor is set the hidden feature
dimension as 96. The training setting is same as pretraining
stage but sets train steps to 20k and the step of adding auxiliary
loss is set to 300. In this work, we do the experiment on three
settings: a) the input reprogram, b) the latent adapter, and c)
the combination of the input reprogram and latent reprogram.
We conduct the evaluation with objective methods, mel cep-
stral distortion (MCD) to quantify the distortion between two
sequences of Mel-frequency cepstral coefficients. We further
evaluate the character error rate (CER) of pretrained Automatic
Speech Recognition (ASR) model. We conduct experiments on
two alternative ASR models trained with the zh-CN and zh-TW
corpora of Common Voice [43], with CER baselines provided
by HuggingFace of 0.19 and 0.10, respectively. We expect to
see the synthetic Taiwanese Mandarin accent speech have lower
CER on the corresponding pretrained ASR model but have a
terrible result on pretrained zh-CN ASR model. Referring to
the CHiVE-BERT [44], we conduct a subjective mean opinion
score (MOS) on naturalness and accent quality(AQ). The ac-
cent quality is used to determine whether the voice sample came
from a native accent speaker. We ask people to rate on a 5-scale
Likert scale (1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent) for
these two MOS evaluations.

4.2. Experiment results

We show the experiments on accent transferring from zh-CN to
zh-TW. Table 1 lists the results of MCD and human evaluations.
We conduct the experiments on three PEL settings including
adapter, input reprogram, and the combination of input repro-
gram and latent reprogram. Besides, we run the fine-tuning
(FT) and decoder fine-tuning methods as baselines. By fine-
tuning the whole backbone, we get the best value on MCD and
MOS evaluations. Besides, we find out that all the methods we
proposed shows competitive result against the full fine-tuning
strategy and even outperform the decoder fine-tuning method.
Compare to the result of parameter-efficient methods, the input

Table 2: ASR evaluation in terms of word error rate (WER)
for synthetic speech was conducted under parameter-efficient
settings.

Methods ASR Models WER (↓)
zh-TW zh-CN Diff.

FT 0.202 0.408 0.206
Decoder FT 0.187 0.317 0.130

Input Reprogram 0.210 0.343 0.133
w/ SWD 0.215 0.346 0.115

w/ MMD 0.240 0.371 0.131
Latent adapter 0.177 0.344 0.237

w/ SWD 0.185 0.317 0.180
w/ MMD 0.177 0.362 0.285

Input + latent Reprogram 0.176 0.373 0.197
w/ SWD 0.224 0.389 0.165

w/ MMD 0.179 0.331 0.159

reprogramming can have acceptable results With only 0.6% of
total parameters being trainable. The adapter and the joint re-
program (IR+LR) perform better results compared to the input-
based methods but require more trainable parameters. We fur-
ther show the results with auxiliary SWD/MMD loss to high-
light the effect of optimal transport perspective. Clearly, the
optimal transport viewpoint aids the model in producing natural
speech with good accent quality.1

To show the effect of accent transfer, we produce synthetic
Taiwanese Mandarin accent speech based on various PEL set-
tings and compare the CER when testing on different pretrained
ASR models. The results are shown in Table 2. Obviously, the
synthetic speech cannot be well recognized by pretrained zh-CN
model because of the large domain difference while performing
in-domain testing with a pretrained zh-TW model achieves a
lower CER value. One special finding is the fine-tuning method
has a higher CER which indicates the sound with naturalness
can’t prove the ASR performance. Observing the CER on the
zh-TW accent pretrained model, the error rate is reduced and the
auxiliary MMD loss reaches a better result compared to SWD
loss when utilizing latent parameter-efficient learning methods.

5. Conclusions
We introduce parameter-efficient methods into text-to-speech
accent adaptation via model reprogramming and residual
adapter. Benefits from input parameter-efficient learning, the
input reprogramming, the backbone can repeatedly be deployed
by only replacing the reprogramming layer. Furthermore, la-
tent parameter-efficient learning including adapter learning and
latent reprogramming shows their effect by tuning the latent
feature, and improving the performance compare to the input
reprogramming method. By leveraging the concept of optimal
transport, we design an unsupervised auxiliary loss using SWD
and MMD distance metrics to strengthen the tendency we ob-
served from figure 2, and experiments prove that the auxiliary
loss indeed helps the model produce speech with naturalness
and higher accent similarity. Because we first introduce model
reprogramming in text-to-speech and show its effectiveness on
accent adaptation, it would be interesting to apply reprogram-
ming schemes to other cases such as performing cross-lingual
adaptation by leveraging the well-trained TTS model.
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