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Abstract
It is difficult for an E2E ASR system to recognize words such
as entities appearing infrequently in the training data. A widely
used method to mitigate this issue is feeding contextual infor-
mation into the acoustic model. Previous works have proven
that a compact and accurate contextual list can boost the per-
formance significantly. In this paper, we propose an efficient
approach to obtain a high quality contextual list for a uni-
fied streaming/non-streaming based E2E model. Specifically,
we make use of the phone-level streaming output to first filter
the predefined contextual word list then fuse it into non-casual
encoder and decoder to generate the final recognition results.
Our approach improve the accuracy of the contextual ASR sys-
tem and speed up the inference process. Experiments on two
datasets demonstrates over 20% CER reduction comparing to
the baseline system. Meanwhile, the RTF of our system can be
stabilized within 0.15 when the size of the contextual word list
grows over 6,000.
Index Terms: Speech recognition, RNN-T, transducer, context-
aware training, attention, context bias

1. Introduction
With the superior performance over traditional hybrid sys-
tem and sufficient training data, end-to-end (E2E) automatic
speech recognition (ASR) systems [1, 2, 3, 4, 5], such as re-
current neural network transducer (RNN-T) [3, 6, 7] and trans-
former [5, 4, 8], have recently been widely adopted. An E2E
model jointly optimizes the overall recognition pipeline dur-
ing training and generates the output word sequence directly.
However, one main disadvantage of such E2E ASR system is
its deficiency in recognizing words which appear rarely in the
paired audio-to-text training data, such as song names or person
names. To solve this problem, a typical solution is to incor-
porate contextual information into an external LM and perform
rescoring on the original acoustics posterior to generate a new
biased output by adopting WFST decoding [9, 10] or some kind
of fusion approach [11, 12, 13]. Such solutions are flexible for
deployment and do not need to retrain the network. However, a
separate rescoring module can not handle the error introduced
by the upstream acoustic network adequately and often lead to
an unsatisfactory bias performance.

Another feasible solution, we refer as E2E context bias,
is to integrate contextual information during network train-
ing [14, 15, 16], which proposes an additional bias encoder with
location-aware cross attention mechanism to rescore the con-
textual word at training and inference with label embeddings,
such as contextual LAS (C-LAS) [14] and context-aware trans-
former transducer (CATT) [16]. Such architectures can inte-
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grate contextual information into acoustic model to improve the
output posterior distribution corresponding to the related con-
textual words and fit the subsequent external LM well. While
as the size of the possible contextual word list grows in real ap-
plications, the accuracy and latency of the overall system will
be affected rapidly due to disperse attention score and heavy
attention computation.

Moreover, in practice, we may not obtain compact and ac-
curate contextual information in advance for some scenarios.
For example, in the case of phone contact scenario, we can ob-
tain the person names from the user address book as contex-
tual information and form a compact contextual word list (size
around one to several hundreds) for the context bias module.
While in the scenario of music search, we may face a large con-
textual word list (size over thousands) containing popular songs
or artist names. In the latter case, E2E context bias cannot work
well due to the large size and low quality of the contextual word
list, leading to performance degradation [14, 16, 17].

In this paper, we address this problem by introducing a fil-
tering strategy to large contextual word list, aiming at alleviat-
ing recognition performance degradation as well as keeping a
reasonable real time factor (RTF) at run-time. Specifically, we
propose a two-stage contextual word filter module for attention-
based context bias, especially for cascaded encoder ASR frame-
work, such as [18], which has shown superior performance on
the recognition accuracy as well as providing a prompt feed-
back for users. In addition, such framework allows us to make
full use of the streaming output to extract a compact and ac-
curate contextual word list from the predefined large word list.
We particularly choose phone as the streaming modeling unit to
match more possible homophonic contextual word candidates
efficiently. Specifically, we deploy the two stage filter mod-
ule on the phone-level streaming output to filter the predefined
contextual word list. The first stage of the filter module com-
putes the posterior sum confidence (PSC) without considering
the phone order of occurrence to immediately eliminate most
of the irrelevant candidates. The second stage further computes
the sequence order confidence (SOC) on the surviving candi-
dates to produce the final contextual word list. While come to
the end, we use the final contextual word list as the input for
E2E context bias module to integrate the contextual information
with the output of non-streaming encoder and decoder to gener-
ate the final character-level output. With our proposed filter and
context bias approach, we can gain over 20% relative character
error rate reduction (CERR) comparing to the baseline system
on two datasets representing two typical application scenarios.
Meanwhile, the RTF of our system can be stabilized within 0.15
when the size of the contextual word list grows over 6,000.

The rest of the paper is organized as follows. In Section
2 we first introduce our base ASR model framework modified
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from [18]. Then we introduce our two stage contextual word
filter module in Section 3. Section 4 presents experiment setup,
results and detailed analysis. Conclusions are finally drawn in
Section 5.

2. Acoustic Model and Contextual Bias
In this section, we introduce the overall framework of our base
ASR system, as shown in Fig. 1(a) and (b). In general, we de-
ploy an attention-based E2E context bias module to the trans-
ducer model with cascaded encoders.

2.1. System Overview

In general, our framework is modified from [18]. Comparing to
the typical transducer, transducer with cascaded encoders con-
sists of both causal and non-causal layers. The input features
X are first passed to a causal encoder which results in a higher-
level latent representation ES . The non-causal encoder, which
is connected in cascade to the causal encoder, receives ES as
input, and outputs ENS .

Different from [18], we use separate predictor and joint net-
work for the causal and the non-causal encoders to generate
modeling units of different granularity. The modeling unit of
streaming and non-streaming output are phone and character
respectively. There are two reasons for us to adopt different
output units: 1) In our proposed approach, the streaming out-
puts are used to match the most possible contextual words from
a big word list. Note that there are many homonyms in Chinese
and phone modeling unit can match all words with the same
or similar pronunciation; 2) Rare contextual words are hard to
recognize for streaming model with character unit, which will
affect the performance for subsequent filtering. Hence using
phone as modeling unit will be better because the number of
phone units is relatively small and the their coverage in training
data is more comprehensive. Same as [18], the total loss can be
computed as the weighted sum of streaming transducer loss Ls

and non-streaming counterpart La:

LTransducer = λLs + (1− λ)La , (1)

where λ is a constant weight.

2.2. Context Embedding Extractor

An additional context embedding extractor is added to the non-
casual encoder and the predictor as shown in Fig. 1(b). It ac-
cepts character sequence of context words as input and gener-
ates fixed dimensional vector representations. Suppose there
are N contextual words. We transform words into character se-
quences as the input of context embedding extractor, where the
maximum length of N contextual words is L characters. All
the words are represented by characters and padded to the same
length. We use C ∈ {Z+}N×L as the input of the extractor.
Element in C represents the integer id of a character. First, the
input matrix will be transformed into an embedding matrix E0

with shape N × L × D using an embedding layer. Then, in
order to obtain a fixed length representation for each word, a
self-attention based transformer along L dimension is used to
transform E0 into E1 with shape N×L×F , where F is the out-
put dim of the transformer. We call this transformer as “intra-
transformer” because the self-attention is calculated among a
contextual word. Thanks to the self-attention, we use the first
token’s transformer output as the fixed length representation for
each word, where we note it as EI = E1[:, 0, :] ∈ RN×F . Fur-
thermore, in order to model the relationship between contextual

words, another transformer named “inter-transformer” is used
along N dimension of EI . We obtain the final output EC after
inter-transformer as the contextual embedding.

Moreover, we deploy a character-to-phone embedding
module proposed in [19] to assist the training of context em-
bedding extractor. The module provides additional phone in-
formation to discriminate similar character sequences with dif-
ferent pronunciations. Thus it scales better to unseen contex-
tual words by mapping character sequences into a space more
correlated with the acoustics and better covered by the training
data. Specifically, as shown in Fig. 1(d), two context decoders
are added to predict the corresponding character and phone se-
quence of the contextual words given EC . The character-to-
phone embedding module is learned jointly using multi-task
learning. The embedding loss can be computed as:

LEmbedding = Lphone + Lchar. (2)

And the final loss of the overall system can be computed as:

L = αLTransducer + βLEmbedding, (3)

where α and β are weight hyper-parameters.

2.3. Cross Attention Bias Module

Given the contextual embeddings EC , we aim to integrate con-
textual information into the transducer. The cross attention bias
module is designed to learn relevance between contextual em-
beddings and utterances. The contextual embeddings will be
injected into both the non-casual encoder and the predictor us-
ing attention mechanism as shown in Fig 1(b) and (c). Specifi-
cally, in the cross attention bias model, the query Q with shape
B×T×F comes from the non-casual encoder or the predictor’s
hidden states, where B, T and F represent batch size, sequence
length and hidden dimension respectively. EC is used as key
and value of self-attention. The final encoder or predictor hid-
den representations H after considering contextual information
can be calculated as:

H = Softmax(
QE⊤

C√
F

)EC , (4)

where Q equals to ENS or Pu.

3. Two Stage Contextual Word Filter
In this section, we first introduce the overall inference pipeline
of our system with our proposed two-stage contextual word fil-
ter module, as shown in Fig. 1(a). Then we introduce the two-
stage algorithm accordingly.

3.1. General Inference Pipeline

The inference process of our proposed framework can be di-
vided into streaming and non-streaming parts. During the
streaming inference, the system receives chunked acoustic fea-
ture as input and produces phone-level posterior matrix. We set
a sliding window containing several output chunks for contex-
tual word filtering. The sliding window slides forward when
a new chunk output from streaming inference process comes
and we use the output phone posterior matrix within the slid-
ing window to filter the predefined contextual word list. When
it comes to the non-streaming part, the filtered contextual word
list is used as the context bias module input to produce the final
non-streaming character sequence. We describe the two stage
filtering algorithm in detail as follows.
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Figure 1: The proposed transducer with cascaded encoders, consisting of both streaming and non-streaming inference pipeline, i.e.,
[casual-encoder → phone decoder] (a) and [causal-encoder → non-causal-encoder → char decoder] (b). For the bias encoder (c), we
use transducer encoder/decoder embedding as queries and EC as key and value for cross attention and combine the attention vector
with the original input transducer encoder/decoder embedding to integrate contextual information. For joint character and phone
training (d), the character and phone embeddings are learned jointly using multi-task learning.

3.2. Posterior Sum Confidence

The first stage compute the Posterior Sum Confidence
(PSC) [20]. The PSC only focuses on the posterior probabilities
of phones related to the contextual word and does not consider
the order of occurrence. Specifically, we calculate the sum of
the maximum posterior probabilities of all phones belonging to
the contextual word appeared in the sliding window and normal-
ize it with the sequence length. This stage aims to immediately
eliminate most of the irrelevant contextual words.

3.3. Sequence Order Confidence

The second stage computes the Sequence Order Confidence
(SOC). The SOC focuses on the occurrence order of the con-
textual word phone sequence. We traverse the whole sliding
window to compute the SOC score of the remaining words and
set a threshold to filter the irrelevant contextual words. In de-
tail, we design a dynamic programming algorithm as shown in
Algorithm 1. Given the posterior matrix pt,f with T frames and
F phone classes and reference contextual word phone sequence
U , we compute the phone sequence order score SSOC among
contextual words by dynamic programming using auxiliary ma-
trix dp.

4. Experiments

In this section, we first introduce the training corpus and the
test sets. Experimental setup and evaluation metrics are then
described. Finally we present the experimental results and de-
tailed analysis.

4.1. Corpus and Contextual Word List

Our models are trained on a set of 48,000-hour anonymized
Mandarin speech corpus which is collected from Tencent in-
car speech assistant products. We test our approach on two test
sets – Contacts and Music Search. The Contacts test set con-
tains about 1,000 utterances with 970 contextual words. Most
of the contextual words are person name. For Music Search
test set, there are about 3,000 utterances. In this case, we can
not obtain exact contextual word list in advance, so a pretty big
context word list is used, which contains 6,253 names of the
most popular songs and artists.

Algorithm 1 Sequence Order Confidence (SOC)

Require: Input posterior matrix pt,f , contextual word phone
sequence U .

Ensure: SOC score SSOC .
1: initialize a dp matrix of shape (len(U), T ).
2: for each i ∈ len(U) do
3: for each j ∈ [1, T ] do
4: if i = 0 then
5: if j = 0 then
6: dp[i, j] = pj,Ui

7: else
8: dp[i, j] = max(dp[i, j − 1], pj,Ui)
9: end if

10: else
11: if j = i then
12: dp[i, j] = dp[i− 1, j − 1] + pj,Ui

13: else
14: dp[i, j] = max(dp[i−1, j−1]+pj,Ui , dp[i, j−

1])
15: end if
16: end if
17: end for
18: end for
19: SSOC = dp[−1][−1]/len(U)

4.2. Experimental Setups

We use 40-dim power-normalized cepstral coefficients
(PNCC) [21] feature computed with a 25ms window and
shifted every 10ms as input for all experiments. For the config-
uration of cascaded encoder based Conformer Transducer, the
causal encoder consists of a convolutional downsampling layer
to achieve a time reduction rate of 4 and 12 Conformer blocks.
Each Conformer block consists of 4-head 256-dim multi-head
attention block, CNN with kernel size 15 and 1,536 linear
units. The input chunk size during the streaming inference is
53 frames, which is about 480 ms. Totally 20 historical chunks
will be used for Conformer layer. The non-causal encoder
consists of 2 Conformer blocks. The non-casual Conformer
block has the similar configuration as the casual one apart
from the CNN module. Non-causal convolution is used for
non-casual Conformer blocks. Both the phone predictor and
character predictor are a 1-layer 640-dim LSTM. The output
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Table 1: CER and CERR (%) for different context bias strategy.

Music Search Contacts
CER(%) ↓ CERR(%) ↑ CER(%) ↓ CERR(%) ↑

Baseline 2.51 - 10.22 -
+ Blank list 2.65 -5.5 9.99 2.2
+ Full list 2.52 -0.3 7.13 30.2
+ PSC 2.07 17.5 6.19 39.4
++ SOC 2.00 20.3 6.01 41.1
++ SOC (UD) 2.42 3.6 9.63 5.7
Topline 1.66 33.8 4.81 52.9

units for phone include 211 context-independent (CI) phones
and the output units for character include 6,001 commonly
used Chinese characters including 26 English characters.

The context embedding extractor consists of a 4-head 256-
dim Transformer block with 256-dim linear units as intra-
transformer and two 4-head 256-dim Transformer blocks with
512-dim linear units as inter-transformer. The bias encoder
is a MHA block to integrate the contextual information. For
the joint character and phone module, both the character con-
text decoder and the phone context decoder are a Transformer
block of same configuration with the intra-transformer. Such
decoders receive context vector to predict the ground truth char-
acter/phone sequence to compute the joint embedding loss.

4.3. Analysis on Contextual ASR Accuracy

All experimental results on recognition accuracy are demon-
strated as character error rate (CER) and relative character error
rate reduction (CERR). The results are shown in Table 1. Here
the baseline system is the original Transducer with cascaded en-
coders without a context bias module. The topline system is the
same system as the baseline except an extra context bias mod-
ule, which uses the ground truth contextual words as the input
contextual word list for each test utterance. As shown in Ta-
ble 1, the context bias module with even full contextual word
list can still get a considerable CER reduction of 30% in Con-
tacts scenario. While for the scenario with a large predefined
contextual word list – Music Search, the performance of the
context bias module with full contextual word list declines ob-
viously. By contrast, with our proposed two stage contextual
word filtering algorithm (PSC and SOC), both scenarios can
get a considerable reduction on CER, of which about 20% on
the scenario with large predefined contextual word list (Music
Search) and 40% on the scenario with small contextual word
list (Contacts). The performance of the system with our pro-
posed contextual word filter module is obviously superior to the
system with full contextual word list and is impressively close
to the topline system. And the performance of the two-stage
filtering algorithm (PSC and SOC) is better than the one stage
algorithm (PSC).

Moreover, we evaluate the performance of the system with
our proposed contextual word filter module on unmatched do-
main (UD) by cross validation. Specifically, we use the contex-
tual word list of Music Search and evaluate on Contacts set, vice
versa. Results show that no damage on the unmatched domain
comparing to the baseline system.

4.4. Analysis on Contextual Word Filtering Performance

We further study the filtering performance of our proposed al-
gorithm. We use Entity Recall Rate (ERR) and Average List
Size (ALS) to evaluate our algorithm. We define ERR as the

Table 2: ERR (%) and ALS for different contextual word filter-
ing algorithm.

Music Search Contacts
ERR(%) ↑ ALS ↓ ERR(%) ↑ ALS ↓

Original List - 6253 - 972
+ PSC 96.04 17 92.88 12.7
++ SOC 94.36 3.7 91.19 2.8

Table 3: RTF for context bias system with different contextual
word filtering algorithm.

RTF ↓
Music Search Contacts

Original List 4.670 0.196
+ PSC 0.147 0.106
++ SOC 0.149 0.107
Test Set Duration (sec.) 8866 3215

recall rate of the ground truth entities after filtering and ALS
as the average size of contextual word list after filtering. The
filtering algorithm with higher ERR and smaller ALS is better,
which means keeping more correct contextual words as well as
suppressing the contextual word list size. As shown in Table 2,
the PSC stage can filter most of the irrelevant words in the pre-
defined contextual word list and keep a high ERR while the use
of SOC further suppresses the size of the final contextual word
list with negligible decline on ERR. It further proves that our
proposed two-stage contextual word filtering algorithm leads to
a better recognition performance.

4.5. Analysis on RTF

Finally we compare the runtime RTF between the system us-
ing our proposed filter module with the one with full contextual
word list as input. Specifically RTF is measured on a 2.50GHz
Intel(R) Xeon(R) Platinum 8255C CPU with single thread. As
shown in Table 3, comparing the RTF between the scenario of
Music Search and Contacts, with the size of the input contextual
word list grows, the RTF of the system with full contextual word
list as input increases rapidly and becomes unacceptable. How-
ever, with the filtered contextual word list as input, the RTF of
the overall system can be kept within 0.15, which is stable when
the original input contextual word list grows over 6,000.

5. Conclusions
In this paper, we propose a two stage contextual word filtering
module for transducer with cascade encoders and set up a new
contextual ASR framework. With the new framework, the sys-
tem can take advantage of external contextual information such
as contacts and music lists during inference. Moreover, when
the size of the input contextual word list grows, with our pro-
posed filtering module, we can alleviate the accuracy decline as
well as speed up the inference process significantly. We evalu-
ate our approach on two test sets representing different context
biasing scenarios, showing over 20% relative CER reduction
comparing to the baseline system. Impressively, the RTF of our
system can be stabilized within 0.15 even when the size of the
input contextual word list grows over 6,000.
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