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Abstract

In this paper, we propose AD-TUNING, an adaptive CHILD-
TUNING approach for hyperparameter tuning of child net-
works. To address the issue of selecting an optimal hyperpa-
rameter set P, which often varies for different tasks in CHILD-
TUNING, we first analyze the distribution of parameter impor-
tance to ascertain the range of P. Next, we propose a sim-
ple yet efficient early-stop algorithm to select the appropriate
child network from different sizes for various speech tasks.
When evaluated on seven speech processing tasks in the SU-
PERB benchmark, our proposed framework only requires fine-
tuning less than 0.1%~10% of pre-trained model parameters
for each task to achieve state-of-the-art results in most of the
tasks. For instance, the DER of the speaker diarization task is
9.22% relatively lower than the previously reported best results.
Other benchmark results are also very competitive. Our code
is available at https://github.com/liyunlongaaa/
AD-TUNING.

Index Terms: efficient tuning, adaptive early-stop algorithm,
self-supervised models, CHILD-TUNING, SUPERB

1. Introduction

Self-supervised learning (SSL) has become increasingly pop-
ular in recent years due to its ability to learn representations
from large quantities of unlabeled data. This approach has been
widely used in computer vision (CV) [1][2][3], natural language
processing (NLP) [4][5][6], and speech processing [7][8][9]
tasks to enhance the performance of deep learning models. The
SSL method involves training a shared representation model on
unlabeled data using various pretext tasks, such as predicting
the missing portion of an image or the masked token in a sen-
tence. This pre-training stage helps the model learn relevant fea-
tures that can be fine-tuned for various downstream tasks. Al-
though the pre-trained model can be easily fine-tuned to achieve
promising results on many downstream tasks, it also has an ob-
vious drawback: conventional approaches finetune all the pa-
rameters of the pre-trained model, which becomes prohibitive
as the model size and the number of tasks grow. To address this
issue, numerous parameter-efficient fine-tuning methods have
been proposed in NLP. Among these methods, adapter and its
variants [10][11][12] have achieved great success, by inserting
a small module into the pre-trained model and only updating the
parameters of the small module while freezing the parameters
of the pre-trained model. Consequently, we can utilize a shared
pre-trained model and only need to store the adapter parame-
ters fine-tuned for each specific task when migrating between
different tasks.
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Motivated by NLP, there are also studies to introduce
adapters to handle speech tasks. Using adapter on Hubert for
speaker recognition tasks has been proposed [13]. Adapters
have also been employed for Automatic Speech Recognition
(ASR) task in [14][15][16]. More recently, [13][17][18] used
adapter to solve a variety of speech tasks, and [17] provided
a baseline for various parameter-efficient methods in the SU-
PERB benchmark. However, such adapter methods have the
disadvantages of introducing additional inference time [11] and
requiring human consideration of the location of adapter inser-
tion [12][19]. These drawbacks can be overcome if we can
fine-tune the pre-trained model itself with parametric efficiency
without resorting to these small modules [20][21][22], but this
aspect of the work has rarely been studied in the speech com-
munity.

In this paper, we mainly explore parameter-efficient fine-
tuning of the speech pre-trained model itself for various speech
tasks. To our knowledge, we are the first to introduce CHILD-
TUNING [21] from NLP, a parameter-efficient fine-tuning
method without adding any modules. However, the hyperpa-
rameter P that determines the size of the child network is very
difficult to optimize in CHILD-TUNING, because often the op-
timal P varies with the task and even the amount of data. To
address the above issue, we first analyze the distribution of pa-
rameter importance to ascertain the range of P. Secondly, we
propose a simple yet effective early-stop algorithm to adaptively
select the appropriate child network from different sizes for var-
ious speech tasks. Finally, when evaluated seven different tasks
in the SUPERB benchmark, our proposed method called Adap-
tive CHILD-TUNING (AD-TUNING) only needs to fine-tune
less than 0.1%~10% of parameters for each task to achieve bet-
ter performance than full fine-tuning. Benefited from our effi-
cient adaptive early-stop algorithm, we achieved state-of-the-art
results in most of the tasks. For instance, the DER of Speaker
Diarization (SD) task is 9.22% relatively lower than the previ-
ously reported best results. Other benchmark results are also
very competitive.

2. Review of CHILD-TUNING
2.1. Overview of CHILD-TUNING

Before introducing CHILD-TUNING, we first present a gen-
eral formulation of back propagation during vanilla fine-tuning.
The model’s parameters at the ¢-th iteration are denoted as w;
and wo denotes the pre-trained parameters. During vanilla fine-
tuning, all parameters are updated by the gradient descent of the
loss function £ (w). This process can be expressed as:
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Figure 1: lllustration of the difference between CHILD-
TUNING and Vanilla fine-tuning. CHILD-TUNING forwards
on the whole network while backwarding on a subset of network
(i.e., child network), To achieve this, a task-free or task-driven
mask is performed on the gradients of the non-child network,
resetting them to zero.

where %ﬁj” are the gradients corresponding to the model pa-

rameters wy, 7 is the learning rate.

Like vanilla fine-tuning, CHILD-TUNING calculates the
gradients for all trainable parameters. However, the key dif-
ference is that CHILD-TUNING determines a child network C'
and only updates this part of parameters. Unlike [21], our child
network does not change after determining. To achieve this, a
0-1 mask with the same size as the parameter w is defined as

follows:
) 1,
MY =
{07

where M and w® denote the i-th element of the mask M
and parameters w, respectively. M will not be changed once it
is confirmed. Then, the parameter update at step ¢ of CHILD-
TUNING is represented as follows:
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The comparison of vanilla fine-tuning and CHILD-
TUNING can be seen in the description of Fig.1.

2.2. Task-Free variant: CHILD-TUNING

At the beginning, a task-free child-tuning (CHILD-TUNINGF)
is adopted which doesn’t require any downstream task data.
Specifically, CHILD-TUNINGF generates a 0-1 mask M at the
1-st iteration drawn from a Bernoulli distribution with a proba-
bility Pr.

M ~ Bernoulli(Pr) 4

As Pr increases, the child network grows larger, result-
ing in updates to more parameters. if Pr equals 1, CHILD-
TUNINGF becomes equivalent to vanilla fine-tuning.

2.3. Task-Driven variant: CHILD-TUNING p

CHILD-TUNINGp takes into account the labeled data for the
downstream task and identifies the most significant child net-
work. Fisher information estimation [23] is used to find a highly
relevant subset of parameters for a specific downstream task.
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Formally, the Fisher Information Matrix (FIM) for the
model parameters w is defined as follows:

(Blog]P(y|x;w)) <8logIF’(y|w;w)>T

F(w) =E (5)
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where z and y denote the input and the output, respectively.
Following [24], given the task-specific training data D, CHILD-
TUNINGp uses the diagonal elements of the empirical FIM to
point-estimate the task-related importance of the parameters. In
form, the Fisher information for the ¢-th parameter is as follows:
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CHILD-TUNINGp assumes that the more important the
parameter toward the target task, the higher Fisher information
it conveys. Hence the child network C'is comprised of the pa-
rameters with the highest information. The child network ratio
is denoted as Pp € [0, 1], which determines the size of the child
network we select according to the ranking of information. As
Pp increases, the size of the child network also grows. And if
Pp equals 1, the approach degenerates into vanilla fine-tuning.
For simplicity, we use P to denote Pp in subsequent sections.

3. Efficient hyperparameter optimization
3.1. Analysis of the hyperparameter P

In order to determine the appropriate range of P, unlike the ar-
bitrary division in [21], we analyzed the parameter importance
distribution. We found similar distribution shapes between dif-
ferent tasks described in Section 4.1, two are shown in Fig.2.

By analyzing the distribution of parameter importance, on
the left side of the red line (corresponding to P >= 0.1), we
observe there are a large number of parameters with low impor-
tance gathered. If we arbitrarily increase PP, we can only cover
more inefficient parameters, but they contribute little to the gra-
dient of the parameters and the update of the model. As we want
P not to be too big (for parameter-efficient tuning), and should
take the important parameters as much as possible. So the value
of P less than 0.1 is more reasonable.
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Figure 2: Fisher information distribution of SD and PR tasks.
Fisher information value is scaled by log function. The large
importance values are clustered in a small portion on the right.

3.2. Efficient adaptive early-stop algorithm

Intuitively, the optimal value of P may change corresponding to
different tasks and even varies depending on the learning rate.
Therefore, within our determined range P, we coarsely selected
three different values of P (P; = 0.001, P, = 0.01, P3 = 0.1,
respectively) in order to find the appropriate P value for the di-
verse tasks as much as possible. In Table 2, our experiments
confirmed this view. For example, in the case of Speaker Iden-
tification (SID) and ASR tasks, smaller P values outperform



larger ones, whereas for the Phoneme Recognition (PR) task,
larger P values are more appropriate. In our view, the occur-
rence of this phenomenon can be attributed not only to the task
type but also to the data size, which we discuss further in Sec-
tion 4.4. Thus there is an intractable problem: without any pri-
ori knowledge about the tasks, and the data, it is difficult to
directly determine how large a child network is most appropri-
ate.

Fortunately, by observing the training process of different
child networks, we found that distinct trends emerge early in
the training process. The training curves of different tasks in
Fig.3 indicate that continuing to train the child networks with
performed poorly early on usually did not yield better results.
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Figure 3: The promising child network can be distinguished
early in training. The plots show training curves for three child
networks that different sizes on ASR, PR task respectively.

Based on the above observations and inspired by the work
in AutoML [25][26], we propose a simple yet efficient adap-
tive early-stop algorithm, to select the most promising child net-
work. The complete pipeline is shown in Fig.4.
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Figure 4: The pipeline of our proposed AD-TUNING.

Specifically, the algorithm can be determined by four pa-
rameters: 7, T, n, and c. We can start with n different sizes
of child networks (i.e., the number of different P), and train
each one in r x T steps, where T' denotes the total number of
training steps and r denotes the early training ratio. Then all
child networks are evaluated, and only the ¢ most promising
ones are fully trained. The evaluation can be based on compar-
ing the performance of the respective task on the development
set. So our algorithm is highly efficient since it only runs for
(rn + ¢(1 — 7))T steps in total, in contrast to n’T" steps.

4. Experiment
4.1. Experiment setup

We have verified our proposed AD-TUNING on seven differ-
ent tasks in the SUPERB benchmark [17], including ASR, PR,
SD, SID, Spoken Slot Filling (SF), Spoken Intent Classifica-
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tion (IC), and Keyword Spotting (KS). We developed the ex-
periments based on s3prl'. We used Wav2vec2 [27] as an
upstream model and kept the feature extraction layer frozen.
The weighted sum of multiple hidden states from the upstream
model is the final representation. For our adaptive early-stop
algorithm, we set n to 3, which corresponds to P equal to
0.001,0.01, 0.1, respectively, r to 0.1 or 0.2, and c to 1. It
means we select only the most promising child network. Con-
sequently, AD-TUNING only needs to take 1.27" steps to com-
plete training instead of 37 steps, which train each of the 3 net-
works separately and then choose the best result. We searched
for the optimal learning rate for each downstream task in the
range of 107° to 10™% and used a linear warm-up strategy in
our experiments.

4.2. CHILD-TUNINGF vs CHILD-TUNINGp

We have done a preliminary experimental comparison of
CHILD-TUNINGF and CHILD-TUNINGp. The results are
shown in Table 1, although CHILD-TUNINGF is not a poor
performer, our findings indicate that CHILD-TUNINGp deliv-
ers superior results and greater interpretability, so following ex-
periments we mainly work on CHILD-TUNINGp.

Method [ASR] PR] SD| sSIDf ICt

CHILD-TUNINGF | 6.58 265 3.7 79.26 99.12
CHILD-TUNINGp | 6.53 2.45 3.38 78.03 99.34

Table 1: Comparison of CHILD-TUNINGfr and CHILD-
TUNINGp on different tasks when tuning only the wav2vec2
10 percent parameters.

4.3. Performance in the SUPERB benchmark

To examine the effectiveness of our proposed AD-TUNING,
we compared it to different efficient methods in the SUPERB
benchmark and the result is shown in Table 2. Note that ‘FT’
represents fine-tuning, ‘Houlsby’ is Houlsby adapter with bot-
tleneck 32, ‘CNN adapter’ only adds CNN adapter to the feature
extractor without utilizing Houlsby adapter in the transformer
layers, and ‘CHAPTER’ [13] adds CNN adapter to the feature
extractor while inserting Houlsby adapters into the transformer
layers. The ‘Baseline’ here means only tuning the downstream
model. For details of other methods, please see [17][28]. Ac-
cording to the experimental results, our adaptive early stopping
algorithm successfully identified suitable values of P. Compared
to the previously reported best results, AD-TUNING makes the
DER of the SD task and the PER of the PR task drop relatively
by 9.22% and 3.67%, respectively. As with ‘CHAPTER’, AD-
TUNING is substantially ahead of other approaches on the SID
task, achieved an accuracy rate of 91.66%. And on the other
tasks, AD-TUNING shows very competitive performance. It is
worth noting that there may be some unfairness in the compari-
son made here. CHILD-TUNING is not necessarily superior to
the other methods when the child network remains fixed. The
reason is that AD-TUNING allows for the selection of different
child networks depending on the task with minimal additional
overhead, whereas the other methods lack the ability to make
changes once the structure has been fixed, which of course we
believe is one of our advantages.

4.4. Low-resource adaptation

In NLP, adapters are shown to have advantages over finetun-
ing when adapting to low-resource datasets [29][30]. To see

https://github.com/s3prl/s3prl



Method Params ASR] PR|] SD] SIDT SF?T ICT  KST

FT 94.7M 635 245 358 6648 8487 99.10 9587

Baseline 0 709 774 705 6478 8625 9639 9532

Houlsby 0.60M 588  3.00 400 8771 8587 99.60 97.17
AdapterBias 0.02M 5.54 419 548 7738 8660  99.50  97.30

LoRA 0.29M 694 874 739 6290 8625 9657  96.59

Prefix 0.10M 6.56 418 817 7187 8585 9931  97.05

CNN adapter 4.07TM 632 542 57 7857 86.81 9839  97.20
CHAPTER 4.6TM 622 295 384 9156 8594 9920  95.52
Weighted-sum 12 642 541 588 8142 8671 9834  96.30
CHILD-TUNING (p=0.1) 8.5M 653 245 342 78.03 8278 9934 9734
CHILD-TUNING (p=0.01) 0.85M 6.195 276 338 91.88 8528 9947  97.34
CHILD-TUNING (p=0.001) 0.085M 596 3.0 405 8435 8599 9945  97.11
AD-TUNING (ours) {8.5M,0.85M,0.085M} | 601  2.36 3.25 9166 8610 9953  97.37

Table 2: Performance of different efficient methods in the SUPERB benchmark. The second column represents trainable parameter
used in upstream model. Our AD-TUNING will select the most suitable one from three different child networks. The subtle differences
in the results corresponding to the same child networks are caused by the randomness in training.

if CHILD-TUNING also has such property when applied in
speech tasks, we conducted experiments in the low-resource
settings. We trained our models on 0.5-hour, 1-hour, 5-hour,
and 10-hour datasets generated by Libri-Light [31] and tested
on the testing set of LibriSpeech. As illustrated in Fig.5, our
experiments suggest that a child network with minimal param-
eter updates performs best for small datasets. This is likely due
to the high risk of overfitting to a small dataset when there are
substantial parameter updates. As the number of data increases,
the advantage of updating a large number of parameters is grad-
ually shown. We also compared our proposed AD-TUNING
with other methods [17], as shown in Fig.6. We found that AD-
TUNING can also choose the appropriate child network based
on the size of the dataset and perform well.
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Figure 5: Performance of CHILD-TUNING in low-resource
adaptation. The x-axis represents the size of training data,
while the y-axis represents performance of PR. For PR, we re-
port phone error rate (PER).

4.5. Analysis of parameter updated for each layer

We visualized the ratio of parameters updated for each trans-
former layer on different tasks, as shown in Fig.7. We found
that updated parameters are more intensive at the front and last
few layers. One common characteristic is that the parameter up-
dates in the intermediate layer are relatively few, indicating that
CHILD-TUNING tends to adjust the model near the input and
output parts based on the task. We believe that it is due to the
part close to the model input plays a key role in preprocessing
the features, while the part close to the model output plays an
important connecting role for adaptation to downstream tasks.
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Figure 7: The ratio of parameter updated in each layer.

5. Conclusions

In this paper, we introduce CHILD-TUNING for various speech
tasks and propose an efficient adaptive early-stop algorithm to
select the appropriate child network called AD-TUNING. AD-
TUNING is not only efficient in training time compared to train-
ing different child networks separately, but also achieves excel-
lent results in the SUPERB benchmark. Furthermore, this work
provides a successful paradigm for speech community to ex-
plore ways to efficiently fine-tune the speech pre-trained model
itself in the future.
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