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Abstract
In most cases, bilingual TTS needs to handle three types of
input scripts: first language only, second language only, and
second language embedded in the first language. In the lat-
ter two situations, it is a big challenge to accurately model the
pronunciation and intonation of the second language in differ-
ent contexts without mutual interference. This paper builds a
Mandarin-English TTS system to acquire more standard spo-
ken English speech from a monolingual Chinese speaker. We
introduce phonology embedding to capture the English differ-
ences between different phonology with embedding masks. An
embedding strength modulator is specially designed to capture
the dynamic strength of language and phonology. Experiments
show that our approach can produce significantly more natural
and standard spoken English speech of the monolingual Chi-
nese speaker. From analysis, we find that suitable phonology
control contributes to better performance in different scenarios.
Index Terms: bilingual, speech synthesis, phonology, embed-
ding mask, embedding strength modulator

1. Introduction
Nowadays, a bilingual text-to-speech(TTS)[1] system is neces-
sary for many application scenarios like voice assistant. For
example, the names of English songs and movies are often di-
rectly embedded in Chinese responses. A straightforward way
to build a bilingual TTS system is by collecting speech data
from bilingual speakers. [2] proposed a shared hidden Markov
model (HMM)-based bilingual TTS system, using a Mandarin-
English corpus recorded by a bilingual speaker. [3] presented a
TTS system using a speaker and language factorized deep neu-
ral network(DNN) with a corpus of three bilingual speakers.
However, mixed-lingual corpora are scarce while a large num-
ber of monolingual corpora are easily accessible.

Another way is to leverage monolingual speech data from
different speakers [4, 5, 6, 7, 8, 9, 10]. [7] proposes a polyglot
synthesis method adapting the shared HMM states to the target
speaker, trained on monolingual corpora. [8] proposes to factor-
ize speaker and language based on an HMM-based parametric
TTS system. [9] utilizes a combined phonetic space in two lan-
guages to build a code-switched TTS system based on HMM.
[10] maps the senones between two monolingual corpora in two
languages with a speaker-independent DNN ASR output based
on HMM TTS.

End-to-end TTS systems also extend to multilingual tasks
using monolingual speech[11, 12, 13, 14, 15, 16, 17, 18]. [15]
used Unicode bytes as a unified new language representation
for multilingual TTS. 125 hours of speech were used and their
system can read code-switching text, despite the problem of
speaker inconsistency when cross-language. [16] trained with

designed loss terms preserving the speaker’s identity in multi-
ple languages based on the VoiceLoop architecture [19]. The
trained speech is recorded by 410 monolingual speakers speech
from English, Spanish and German. [17] used an adversarial
loss term to disentangle speaker identity from the speech con-
tent, which trained with 550 hours of speech from 92 mono-
lingual speakers. Limited by corpus size, [18] proposed tone
embedding and tone classifier for tone preservation to generate
utterances in a proper prosodic accent of the target language.

Generally, each speaker speaks only one language, lead-
ing to speaker and language characteristics being highly corre-
lated. Using only monolingual corpora for bilingual or multi-
lingual TTS easily leads to heavy accent carry-over in synthe-
sized speech or inconsistent voice between languages. Actu-
ally, bilingual corpus helps deal with the problem. [20] trained
a TTS system transforming speaker embedding between lan-
guages from a bilingual speaker to other monolingual speakers
for a high degree of naturalness. In this paper, we expect to uti-
lize scarce bilingual corpora to acquire more standard spoken
English from a monolingual speaker, which is highly correlated
with phonology learning.

For example, in mixed-lingual utterances, the pronunciation
of English by a non-native speaker, like Chinese, is strongly
influenced by their native language and is most often differ-
ent from the standard English pronunciation[21]. Mandarin de-
rives pronunciation directly from the spellings of the word with
different tones, which have a high grapheme-to-phoneme(g2p)
correlation. In contrast, English is an alphabetic and highly
non-phonemic language. In Consequence, native phonemic
language speakers, whose pronunciation is influenced by the
spelling of the word, often pronounce English words differ-
ently from standard English speakers[22]. In mixed-lingual
utterances, these speakers, despite qualified bilingual speak-
ers, generally replace some English phonemes with the closest
phoneme in their native language, resulting in mispronuncia-
tion and differences in phonology like articulation change and
intonation variation[23].

Given these challenges, building a state-of-the-art bilingual
TTS system requires special designs handling the English dif-
ferences in phonology between mixed-lingual and monolingual
utterances. In this paper, our contributions include: (1) in-
troducing phonology embedding to capture the English differ-
ences between mixed-lingual and monolingual utterances; (2)
proposing embedding mask to language embedding for distin-
guishing information between different languages and phonol-
ogy embedding for focusing on expression between different
phonology of English; (3) designing embedding strength modu-
lator(ESM) to capture the dynamic information of language and
phonology, which helps to generate more standard spoken En-
glish speech; (4) experiments showing that static and dynamic
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Figure 1: Overview of the proposed bilingual architecture with
specially designed modules marked in yellow color.

components in ESM can control different attributes of phonol-
ogy. Phonology decomposition and control can make a contri-
bution to more standard spoken English expression and better
performance in different scenarios.

2. Model Structure
Fig. 1 illustrates the proposed bilingual TTS architecture. The
encoder-attention-decoder backbone with speaker and language
embedding will be described in Sec. 2.1. The phonology em-
bedding and specially designed masks for language and phonol-
ogy embedding respectively will be described in Sec. 2.2. The
embedding strength modulator will be described in Sec. 2.3.

2.1. Baseline

Our baseline system adopted from [24] is a popular
Tacotron2[24]-based multilingual TTS architecture. It uses at-
tention to bridge encoder and decoder. Language and speaker
information are embedded in separate look-up tables. They are
combined with the encoder output to distinguish different lan-
guages and speakers. Besides, an adversarially-trained speaker
classifier is employed to disentangle text encoder output from
speaker information. Mel-Lpcnet adopted from [25] is used as a
vocoder to reconstruct waveform from given mel-spectrogram.

The architecture takes phoneme sequences as inputs for
both English and Mandarin. Their phoneme sets are simply
concatenated and no phoneme is shared across. Tone or stress
tokens are inserted into the phoneme sequence at the end of
each syllable. For Mandarin, there are 4 lexicon tones and one
neutral tone. Instead, there are 4 stress types for English in-
cludes the sentence, primary, secondary, and none. Moreover,
prosodic break tokens are inserted into the input sequence as
well. Finally, the expanded phoneme set contains: 73 Mandarin
phonemes, 39 English phonemes, 5 Mandarin tones, 4 English
stresses, Mandarin character boundary, English syllable bound-
ary, English liaison symbol and 4 shared prosodic break types,
i.e. prosodic word (PW), prosodic phrase (PPH), intonation
phrase (IPH) and silence at the beginning or end.

2.2. Embedding mask

Fig. 2 shows an example of embedding mask in language and
phonology embedding.

Instead of broadcasting language embedding to all the to-
kens of the input sequence, the proposed method applies lan-
guage embedding only to the token types shared across lan-
guages, i.e. PW, PPH, IPH and /sil/. Because other token types
are language-specific already and need no additional informa-

sil DH AH 6 #1 K AO 7 L #2 z an 4 sil

Language embedding

Phonology embedding
The call赞。

Front-end

Encoder

Figure 2: An illustration of how to mask embedding. Language
and phonology embedding only applied to the highlighted po-
sition of encoder outputs. The symbols #1, #2, #3 and /sil/
denote 4 shared prosodic break types. The numbers 1-5 denote
tones of the previous Chinese syllable. The numbers 6-9 denote
stresses of the previous English syllable.

tion to distinguish language.
On the other hand, to capture the English differences be-

tween the mixed-lingual and monolingual utterances, a special
phonology embedding is designed. To focus on English ex-
pression, it is applied to all English-specific tokens, including
4 types of stresses, syllable boundary and liaison symbol.

2.3. Embedding strength modulator

Even though the language and phonology embedding have been
limited to only part of input tokens by masks, we think their
strength should vary for different contexts. To capture the dy-
namic strength of languages and phonology, we propose an
attention-based embedding strength modulator, whose frame-
work is similar to [26, 27, 28].

The structure of the ESM is shown in Fig. 3. There are two
sub-networks in ESM: multi-head attention and a feed-forward
network. The layer normalization and residual connection are
applied to both of the sub-networks. Formally, from the encoder
output with scaled positional encoding Eo, and the language or
phonology embedding LP , the first sub-network Mo and the
second sub-network Fo are calculated as:

Mo = MH(Eo, LN(LP ), LN(LP )) + LP, (1)

Fo = FFN(LN(Mo)) +Mo. (2)

where MH(query, key, value), FFN(·) and LN(·) are multi-head
attention, feed-forward network and layer normalization respec-
tively. Since the attention key and value (LP ) have only one
item, the energy need not be normalized by softmax operation.
Instead, each head in multi-head attention is computed by:

headh = αh·Vh =
Qh·Kh

∥Qh∥∥Kh∥
·Vh, (3)

where ∥ · ∥ is the L2 norm of the last dimension, {Q,K, V }
represent query, key and value through linear transformation re-
spectively and the strength α is a scaled cosine similarity be-
tween the query and key to be in the range of [-1, 1].

In particular, there are two components in Fig. 3 marked in
yellow color. The original embedding learned for each language
and phonology is regarded as a static component. While the out-
put of multi-head attention, the static embedding multiplied by a
dynamic weight, is regarded as a dynamic component. We will
analyze the roles each component of language and phonology
embedding play in Sec. 3.3.
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Figure 3: The structure of the embedding strength modulator of both language and phonology embedding.

3. Experiments
3.1. Basic setups

Models are trained with proprietary datasets composing three
kinds of high-quality speech: (1) bilingual corpus from two Chi-
nese speakers, 45000 and 25000 Mandarin utterances for female
and male speakers respectively, 9000 mixed-lingual utterances
and 9000 English utterances for both speakers; (2) English cor-
pus from two American speakers, 9000 and 25000 English ut-
terances for female and male speakers respectively; (3) Man-
darin corpus from a female Chinese speaker, 9000 Mandarin
utterances for cross-lingual experiments.

Labels of the above corpora in language and phonology
embedding are described in Tab. 1. Mandarin utterances are
all from Chinese speakers. Their language is labeled Mandarin
and no English phonology label is required. For plain English
utterances, the corpora recorded by both American and Chi-
nese speakers are labeled as English for language and Standard-
English for phonology. These Chinese speakers pronounce En-
glish well and the corpora recording by American speakers are
used as supplementary English datasets and are beneficial to
speaker learning. Particularly, since English parts in mixed-
lingual utterances are in a small amount and are mostly words
and abbreviations with heavy Chinese phonology, we label them
Mandarin for language and Chinese-English for phonology,
treated as Mandarin utterances.

The additional inputs of the learned speaker (64-dim), lan-
guage and phonology embedding (both 512-dim same with the
dimensions of encoder output) are injected into the backbone.
In ESM, the first sub-network includes 8-head multi-head atten-
tion and the feed-forward sub-network consists of two convolu-
tion networks with 2048 and 512 hidden units. Linguistic inputs
have been introduced in Sec. 2.2 and for acoustic features, we
use an 80-band mel-spectrogram extracted from 16kHz wave-
forms. We built the following systems for comparison:
• BASE: Baseline system with sentential language embedding

as described in Sec. 2.1;
• EM: Baseline system with specially designed language and

phonology embedding as described in Sec. 2.2;
• ESM: Baseline system with specially designed language and

phonology embedding through ESM as described in Sec. 2.3.

3.2. Subjective evaluation

We conduct Mean Opinion Score (MOS) evaluations of speech
naturalness and speaker similarity via subjective listening tests.
20 speakers are asked to listen to the generated 20 English ut-
terances and 10 mixed-lingual utterances. MOS results are re-
ported in Tab. 2. Except for parts of samples in listing tests,
generated Mandarin demos of this monolingual speaker are also
shown in demo pages1.

1Samples can be found from: https://fyyang1996.github.io/esm/

We can find that the EM system with masked embed-
ding brings better performance on both speech naturalness and
speaker similarity than the conventional BASE system. It indi-
cates that masked embedding captures features that better repre-
sent language and phonology. For the further proposed embed-
ding strength modulator, we find that by capturing the dynamic
strength of language and phonology system ESM achieves sig-
nificantly better performance than the EM system. It demon-
strates that the dynamic strength of language and phonology is
beneficial to speech naturalness and speaker similarity of gen-
erated speech.

3.3. ESM component analysis

As mentioned above, the output of ESM may be regarded as
the combination of a static component and a dynamic compo-
nent. One simple method of analyzing the contribution of each
component is to condition the model on only one component
at each time. In the generation phase, we replace the static or
dynamic component from Mandarin label to English label for
language embedding or from Chinese-English phonology label
to Standard-English phonology label for phonology embedding
respectively. Fig. 4 shows the spectrogram and F0 contour, ex-
tracted by parselmouth[29], of the same sentence synthesized
with six kinds of label combinations as described below:

(a) Base combination: using Mandarin and Chinese-English
phonology labels both in dynamic and static components;

(b) Reference combination: using English and Standard-English
phonology labels both in dynamic and static components;

(c) Based on (a), replacing dynamic phonology embedding from
Chinese-English to Standard-English phonology.

(d) Based on (a), replacing static phonology embedding from
Chinese-English to Standard-English phonology;

(e) Based on (a), replacing dynamic language embedding from
Mandarin to English;

(f) Based on (a), replacing static language embedding from
Mandarin to English;

Empirically, we find that each component represents artic-
ulation, intonation, speaking rate and pause duration changes
respectively, which influence phonology collectively. Listing to
the samples of (a) and (c) in the demo page, we can easily hear
about articulation changes between them, which is difficult to be
caught sight of. Perceptually, the trend of F0 values in Fig. 4(d)
is different from that in Fig. 4(a), showing that static phonology
embedding major affects intonation. Fig. 4(e) shows that replac-
ing the dynamic language embedding from Mandarin to English
causes a gradual compression of the spectrogram and F0 values
in the time domain. We believe that the dynamic language em-
bedding encodes the information correlated with speaking rate
variation. Besides, syllables in Fig. 4(f) have distinct intervals
compared with that in Fig. 4(a), which demonstrates that static
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Table 1: Labels of trained corpora in language and phonology embedding.

Corpus Language embedding Phonology embedding

(1) Chinese speaker Train
Mandarin Mandarin None

Mixed-lingual Mandarin Chinese-English
English English Standard-English

(2) American speaker Train English English Standard-English

(3) Chinese speaker Test Mandarin Mandarin None

Table 2: The MOS of different systems with confidence intervals
of 95%.

Model BASE EM ESM

Naturalness 3.81±0.12 4.03±0.10 4.39±0.08
Similarity 3.79±0.12 3.91±0.11 4.04±0.10
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(b) Reference combination
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(c) Dynamic phonology embedding
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(d) Static phonology embedding
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(e) Dynamic language embedding
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(f) Static language embedding

Figure 4: Spectrogram and F0 of a test sentence generated by
different combinations, which refers to 2.1 in demo page.

language embedding represents the average duration of pauses.
More demos and be found in the demo page.

3.4. Control

To validate the above analysis, we conduct MOS evaluations
of speech naturalness and speaker similarity via subjective lis-
tening tests. 20 speakers are asked to listen to the generated 15
English utterances for enhancing English expressiveness and 15
mixed-lingual utterances for smooth mixed-lingual transition.
Demos can be found in 3 and 4 on the demo pages.

Enhance expressiveness To enhance the expressiveness
of a plain English text, we double the dynamic components
of both language and phonology embedding while remaining
their static components. The ”double” herein means that the fi-
nal vector has a double distance of the reference vector to the
base vector. For language embedding, the reference is English
and the base is Mandarin. While for phonology embedding, the
reference is Standard English and the base is Chinese-English.
Fig. 5 shows the results of MOS evaluations. We find that by the

27%

36%

26%

4%

47%

60%

Similarity

Naturalness

Proposed No Preference Controlled

Figure 5: A/B preference results for control in enhancing ex-
pressiveness or not with confidence intervals of 95% and p-
value<0.0001 from the t-test.
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Figure 6: A/B preference results for control in smooth transition
or not with confidence intervals of 95% and p-value<0.0001
from the t-test.

”double” operation herein system ESM achieves significantly
better performance than the ESM system on speech naturalness.
It indicates that the control operation enhances English expres-
siveness significantly.

Smooth transition When synthesizing a mixed-lingual
text, we modify the language labels of embedded English words
from Mandarin to English while phonology labels of them from
Chinese-English to Standard-English. Particularly, their static
component of phonology embedding remains Chinese-English.
In this way, the English words will have standard-English ar-
ticulation but more compatible intonation with the context of
Chinese words. Fig. 6 shows the results of MOS evaluations.
It can be found that the controlled ESM system brings better
performance on both speech naturalness and speaker similarity
than the proposed ESM system. It demonstrates that the control
operation is beneficial to smooth mixed-lingual transition.

4. Conclusions

This paper builds a Mandarin-English TTS system for a mono-
lingual Chinese speaker. We introduce phonology embedding
and a special designed mask for language and phonology em-
bedding. They are employed to distinguish two languages and
the English phonological differences between monolingual and
embedded cases respectively. Furthermore, the proposed em-
bedding strength modulator enables language and phonology
embedding to be variable with token context. Experiments
show that our approach can produce significantly more natu-
ral and standard spoken English speech than baseline. Abla-
tion analysis on different components demonstrates that English
phonology can be tuned effectively for various scenarios.
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