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Abstract
Few-shot keyword spotting (FS-KWS) models usually require
large-scale annotated datasets to generalize to unseen target
keywords. However, existing KWS datasets are limited in scale
and gathering keyword-like labeled data is costly undertak-
ing. To mitigate this issue, we propose a framework that uses
easily collectible, unlabeled reading speech data as an auxil-
iary source. Self-supervised learning has been widely adopted
for learning representations from unlabeled data; however, it
is known to be suitable for large models with enough capac-
ity and is not practical for training a small footprint FS-KWS
model. Instead, we automatically annotate and filter the data to
construct a keyword-like dataset, LibriWord, enabling supervi-
sion on auxiliary data. We then adopt multi-task learning that
helps the model to enhance the representation power from out-
of-domain auxiliary data. Our method notably improves the per-
formance over competitive methods in the FS-KWS benchmark.
Index Terms: few-shot learning, keyword spotting

1. Introduction
Few-shot keyword spotting (FS-KWS) refers to the task of rec-
ognizing specific keywords in an audio signal, where only a lim-
ited number of examples are available for each keyword. This
task has gained significant attention in recent years due to its
practical importance in various applications such as voice as-
sistants requiring user-defined keywords [1, 2, 3, 4, 5, 6, 7].
To solve this task, few-shot learning approaches have been pro-
posed to learn a discriminative embedding space that can gen-
erate general representations for novel classes only given few
examples. They mainly leverage prior knowledge from related
tasks or similar data distributions using large-scale annotated
training datasets [8, 9, 10, 11].

However, the keyword spotting (KWS) datasets [12, 13, 14]
that are accessible to the public are typically limited in size
and have a small number of categories. Acquiring a compre-
hensive annotated dataset suitable for KWS is a costly work.
Given the existing datasets, the performance of FS-KWS is lim-
ited, as reported in Fig 1(a), even with the use of an advanced
few-shot learning technique [15]. To this end, we propose to ex-
ploit auxiliary data, especially reading speech data from audio-
books, such as LibriSpeech [16] and MLS [17], which are read-
ily publicly available in large quantities and easily collectable.
These data are not built for the keyword spotting task (e.g., Lib-
riSpeech [16] for speech recognition), but they are expected to
help the model learn a more robust embedding space.

One way to leverage knowledge from a large-scale unla-
beled dataset is through self-supervised learning (SSL) [18, 19,
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Figure 1: t-SNE Visualization of Unseen Keywords Embed-
dings Using Various Learning Methods on the FS-KWS
Benchmark [15]. We train four models using in-domain split-
GSC and out-of-domain reading speech datasets, including Lib-
riSpeech and our proposed word-level labeled dataset, Libri-
Word: (a) metric learning [15] on splitGSC, (b) (a) + self-
supervised learning [18] on LibriSpeech, (c) metric learning
on both datasets (splitGSC + LibriWord), and (d) our proposed
AuxSL on splitGSC and LibriWord. The closed-set classification
accuracy (Acc.) and open-set detection rate (AUROC) indicate
the performance of the models.

20, 21]. SSL has gained widespread usage in various applica-
tions due to its many advantages, particularly its ability to pro-
duce robust feature representations without the need for labeled
data. SSL has been successfully employed in the pre-training
stage of the model [19, 21] or in combination with a target ob-
jective for fine-tuning the model [22, 23]. However, prior litera-
ture has established that SSL is only beneficial to large models,
as evidenced by [24, 25]. Therefore, the lightweight nature of
FS-KWS models presents a challenge for the use of SSL. In this
paper, we empirically derive that the existing SSL methods are
also not suitable for training lightweight models in FS-KWS, as
shown in Fig. 1(b). Instead, we automatically annotate the read-
ing speech data with a word extraction technique [26] and con-
struct a well-organized keyword-like dataset called LibriWord
by filtering and balancing the data, effectively enabling the use
of auxiliary data with supervision on lightweight models.

To effectively leverage both in-domain command-like data
and out-of-domain auxiliary data, we propose a simple but ef-
fective multi-task learning (MTL) framework, called AuxSL,
that incorporates an additional classifier with a supervised loss
function for the out-of-domain data. AuxSL enables the model
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to enhance the representation power from out-of-domain aux-
iliary data while primarily learning keyword representations
on in-domain data. The naive approach of combining the two
datasets and applying a single loss function to the entire dataset,
as shown in Fig. 1(c), results in limited performance improve-
ment. Our proposed framework is evaluated through extensive
experiments on the FS-KWS benchmark, demonstrating its su-
perior discriminative capabilities. In Fig. 1(d), the results show
a relative improvement of 16% in both closed- and open-set set-
tings when using 5-shot samples, compared to the baseline.

2. Related Works
2.1. Small Footprint Keyword Spotting

The aim of conventional keyword spotting is to detect a small
set of pre-defined speech signals, such as the activation phrases
“Alexa” and “OK Google”. Recent research has primarily fo-
cused on enhancing accuracy while minimizing memory re-
quirements and reducing power consumption, allowing for the
deployment to an always-on system [27, 28, 29, 30]. Some stud-
ies have centered around the development of optimal architec-
tures for keyword spotting [27, 28], while others have aimed to
improve the loss function [29] or training approach [30].

2.2. Few-shot Keyword Spotting

Few-shot keyword spotting (FS-KWS) aims to support systems
that require user-defined keywords. Unlike conventional key-
word spotting, FS-KWS involves a scenario in which new key-
words that were not seen during training are enrolled and tested
on the device. To achieve FS-KWS, it is crucial to learn ro-
bust representations in the pre-training stage using a large-scale
dataset. To further improve performance, various loss func-
tions [2, 3, 4], architectures [31], and learning strategies [5, 6, 7]
have been proposed. Modifying the learning strategies is closely
related to our work. Kao et al. [5] present a two-stage frame-
work that compares several popular SSL models to determine
the best model for FS-KWS. Lee et al. [6] incorporate auxiliary
synthetic data generated by TTS, while Shin et al. [7] propose
a novel approach that leverages the linguistically correspond-
ing patterns between speech and text sequences. Our approach
is distinct from prior studies as we propose utilizing auxiliary
data from reading speech domain along with a supervised multi-
task learning strategy, with the objective of training lightweight
models. Recently, D-ProtoNets [15] has been proposed for few-
shot open-set keyword spotting, which involves open-set classes
during test time. Our proposed method is expected to improve
open-set performance in addition to closed-set performance, as
it helps to create robust representations.

3. Proposed Methods
3.1. Problem Definition

Training objectives for few-shot learning: In the domain of
few-shot learning, metric learning based techniques have been
predominantly investigated for constructing a robust embed-
ding space that enables models to extract discriminative em-
beddings for unseen keywords and perform keyword detection
using distance metrics. One of the most popular metric learning-
based methods is ProtoNets [8]. At each training iteration, Pro-
toNets create a classification scenario by constructing a N -way
and K-shot problem from training data, where N represents
the number of classes and K denotes the number of support

Table 1: Metadata of LibriSpeech and proposed LibriWord.

Info. LibriSpeech LibriWord

# of samples 4,806,675 300,000
# of keywords 58,997 1,000
Audio length [0.0s, 11.1s] [0.3s, 2.2s]
Annotations Word-level labels
Annotator Montreal Forced Aligner [26, 32]

samples per class. ProtoNets first construct the prototype of
each class by averaging the embeddings of support samples,
cn = 1

K

∑K
i=1 Fθ(x

s
n,i), where Fθ(·) is a feature extractor.

Subsequently, the prototypical loss function forces the query
samples to minimize the distance from the corresponding pro-
totypes as follows:

LFSL = − 1

M

M∑

i=1

log pθ(y = n|xq
n,i), where

pθ(y = n|xq
n,i) =

exp(−d(Fθ(x
q
n,i), cn))∑N

n′=1 exp(−d(Fθ(x
q
n,i), cn′))

. (1)

d(·) can be any distance metric, xq
n,i is i-th query sample of

class n, and M indicates the number of query samples of class
n in the N -way and K-shot problem. At the inference stage,
prototypes of new classes are constructed by averaging the em-
beddings of enrolled samples. The test samples are then classi-
fied based on the classification probability in Eq. 1.
Limitation of few-shot keyword spotting: Despite the suc-
cess of few-shot learning, a large-scale dataset is required to
learn a robust embedding space. For keyword spotting, the
datasets usually have limited sizes, making it difficult to learn
general keyword representations. While collecting in-domain
command-like data is an effective way to create a robust embed-
ding space, it is challenging to obtain such datasets. To address
this issue, we propose to use easily obtainable auxiliary data,
especially reading speech data.

3.2. LibriWord

Instead of collecting human-labeled keyword spotting data,
we create a dataset named LibriWord containing segmented
utterances and corresponding word-level labels. The samples
are obtained from the LibriSpeech corpus [16], which com-
prises roughly 1,000 hours of read English speech at 16kHz.
It contains numerous words, but lacks word-level alignments
and only utterance-level transcriptions are provided. To obtain
word-level segmented samples, we employ the Montreal Forced
Aligner [32, 26], a word extraction technique previously used
in [7, 33]. We then form a balanced dataset by organizing the
extracted words based on the number of samples and eliminat-
ing similar keywords. Specifically, when a word partially over-
lapped with another word, such as with past tense, plural forms,
or negative forms, we randomly remain one of them to sim-
plify the representation learning process for small models. As
a result, LibriWord includes 300 samples for each top 1,000
frequently appearing keywords. Table 1 presents the metadata
before and after the refinement process, respectively. Learn-
ing with LibriWord, a comparatively smaller dataset than Lib-
riSpeech, yields the benefits of reducing the burden of collecting
auxiliary data and saving storage space, while achieving better
performance (please see Section 4.2).

3.3. FS-KWS with Auxiliary Supervision on LibriWord

We propose a simple but effective multi-task learning frame-
work, called AuxSL, which utilizes an additional classifier and
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Figure 2: Our Proposed AuxSL Framework. Fθ(·) is trained
with both in-domain data for keyword spotting and out-of-
domain auxiliary data from the reading speech source, and
Cϕ(·) is trained to classify auxiliary words for helping to learn
robust representations.

supervised loss function for the out-of-domain auxiliary data to
mitigate potential representation skew that may arise when di-
rectly sharing the feature extractor between in-domain and out-
of-domain data, motivated by [34]. Our multi-task learning ob-
jectives are calculated as follows:

LAuxSL = LFSL + λLSL, (2)

where LFSL represents any few-shot learning loss function on
in-domain training data and LSL represents supervised loss
function on out-of-domain auxiliary data. λ is a balancing pa-
rameter for auxiliary loss. Here, we maintain metric learning
loss on in-domain data and use conventional cross-entropy loss,
as depicted in Figure 2. This approach does not incur additional
cost during inference since the classifier is not used.

For our experiment, we employ a dummy prototypical loss
function of D-ProtoNets [15] for LFSL to efficiently handle
both closed- and open-set query samples. D-ProtoNets [15] are
trained using the dummy prototypical loss, which incorporates
a learnable open-set prototype specifically designed to repre-
sent the open-set class. The open-set prototype is trained jointly
with the class-wise prototypes to enable query samples of both
closed- and open-set to be closely associated with their corre-
sponding prototypes in the N + 1 classification task. During
inference, if the probability of a query test sample xq

t belonging
to the open-set class N + 1, i.e., pθ(y = N + 1|xq

t ), exceeds a
pre-defined threshold, then it is verified as the open-set class.

4. Experiments
4.1. Experimental Settings

Dataset. We use a standard benchmark splitGSC [15] on the
Google Speech Commands (GSC) dataset [12] for keyword
spotting task. The splitGSC contains the train, validation, and
test split designed for few-shot closed- and open-set keyword
spotting. The split includes 15, 10, and 10 keywords for train-
ing, validation, and testing, respectively, with 24,400, 4,007,
and 4,482 samples, respectively. Note that a silence category is
included in all sets. The official background noise provided by
GSC with a probability of 0.8 is used. See [15] for more details.
Implementation details. We use three different small foot-
print backbone models, BC-ResNet8 [27] and Res12 [35], both
of which take 40-dimensional log Mel spectrograms as input
with a window length of 30 ms and frame shift of 10 ms, and
DS-ResNet18 [28], which takes 40-dimensional Mel-frequency
cepstrum coefficient features as input. The network size of BC-
ResNet8, Res12, and DS-ResNet18 is 321k, 8M, and 72k, re-
spectively. Each model is trained for 100 epochs using the
Adam optimizer with an initial learning rate of 0.001, which
is step decayed by a factor of 0.5 every 20 epochs. Each epoch
consists of 500 episodes, each containing 5 closed- and 5 open-
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Figure 3: The accuracy of models trained with balanced and
imbalanced auxiliary data on BC-ResNet8 using the MTL path
(our optimal framework). The 5-shot and 1-shot performance
are denoted by circle and square, respectively.

set classes, with 5 support samples for prototypes and 5 query
samples for each class. For multi-task learning, we use a batch
size of 64 with parallel sampling as in the episodic iterations,
and set λ to 1.0. As an additional module, we used a 1-FC layer
as the classifier. To evaluate the trained model, we used 1, 000
episodes at test time, with 1 or 5 support samples and 15 query
samples per class including open-set classes. We reported the
average 1-shot and 5-shot accuracy and threshold-free area un-
der the receiver-operating characteristics (AUROC) for closed-
and open-set performance with 3 different seeds.

4.2. Analysis of LibriWord Dataset

In Figure 3, we present the results obtained by training with
different dataset constructions after extracting words from the
imbalanced Librispeech corpus, which has highly skewed distri-
bution of samples among its words. Notably, in this experiment,
we employ our final MTL architecture solely to investigate the
impact of LibriWord’s dataset configuration. Our findings in-
dicate that constructing a dataset with a balanced number of
samples per keyword leads to superior performance compared
to using an equally imbalanced dataset or the entire Librispeech
dataset, which is roughly 16 times larger than LibriWord. Using
a balanced number of data per keyword during training aids in
building robust feature embeddings, a phenomenon that has also
been observed in ImageNet, where research on handling imbal-
anced datasets is actively being pursued [36, 37]. To address the
drawbacks of imbalanced datasets, we constructed LibriWord in
a balanced manner and demonstrate its empirical efficacy.

4.3. Comparison of SSL and SL Methods on Auxiliary Data

In Table 2, we compared the performance of few-shot keyword
spotting models trained using self-supervised learning (SSL)
and supervised learning (SL) on auxiliary data. The baseline
model, D-Proto [15], was trained with SL on splitGSC with-
out using auxiliary data. We evaluated three SSL methods: (1)
PreT-Big, which uses a large-scale pre-trained feature extractor
from LibriSpeech and fine-tunes only the classifier for keyword
spotting, (2) PreT, which pre-trains a keyword spotting model
on LibriSpeech using SimCLR and BYOL, (3) MTL with SSL,
which uses SSL on LibriSpeech and SL on splitGSC, and (4)
MTL with knowledge distillation (KD), which uses feature dis-
tillation [38] from the large-scale pre-trained feature extractor
and SL on splitGSC. We also evaluated three SL methods: (1)
PreT, which pre-trains the keyword spotting model using cross-
entropy loss (CE), (2) ALL, which uses all data together to train
the model, and (3) AuxSL, our proposed method that uses a
different path for each dataset. Balancing parameters for MTL
methods are set to 1 and all hyper-parameters are chosen based
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Table 2: A performance comparison between models trained using self-supervised learning and supervised learning on auxiliary data.
The Method column indicates the model training method, and the used dataset is indicated in parentheses. PreT-Big uses the pre-trained
large feature extractor on Librispeech provided by torchaudio. In contrast, other methods use BC-ResNet8 as the feature extractor. We
show 5-shot and 1-shot closed- and open-set average performance and standard deviation.

Learning scheme on auxiliary data Training strategy Method 5-shot 1-shot
Acc. (%) AUROC Acc. (%) AUROC

X Baseline (321k) D-Proto (splitGSC) 82.0 (0.7) 82.9 (0.1) 65.8 (0.3) 75.7 (0.1)

Self-supervised learning

PreT-Big (300M) Wav2vec (LibriSpeech) → D-Proto (splitGSC) 85.3 (0.9) 76.7 (1.2) 66.8 (1.5) 70.5 (0.4)
Hubert (LibriSpeech) → D-Proto (splitGSC) 90.4 (0.3) 85.2 (0.6) 76.2 (0.8) 77.3 (0.9)

PreT SimCLR (LibriSpeech) → D-Proto (splitGSC) 79.9 (1.0) 81.2 (1.0) 64.7 (1.0) 75.0 (0.8)
BYOL (LibriSpeech) → D-Proto (splitGSC) 82.0 (1.5) 82.7 (1.0) 65.7 (1.6) 76.2 (1.0)

MTL

SimCLR (LibriSpeech) + D-Proto (splitGSC) 83.0 (0.8) 83.1 (0.9) 66.6 (1.6) 76.0 (1.0)
BYOL (LibriSpeech) + D-Proto (splitGSC) 81.7 (0.0) 82.7 (0.0) 65.2 (0.4) 76.0 (0.5)

KD w/ Wav2vec (splitGSC) + D-Proto (splitGSC) 82.4 (0.7) 83.3 (0.1) 66.4 (0.6) 76.4 (0.2)
KD w/ Hubert (splitGSC) + D-Proto (splitGSC) 83.7 (0.5) 84.4 (0.5) 67.8 (0.6) 77.3 (0.9)

Supervised learning

PreT CE (LibriWord) → D-Proto (splitGSC) 82.8 (1.6) 84.2 (1.1) 68.7 (1.5) 77.3 (0.8)

ALL D-Proto (LibriWord + splitGSC) 92.2 (0.9) 86.6 (1.3) 77.4 (2.1) 75.3 (1.6)

Ours: AuxSL CE (LibriWord) + D-Proto (splitGSC) 95.6 (0.5) 95.2 (0.4) 87.1 (0.8) 89.4 (0.3)

Table 3: FS-KWS performance on various backbones.

Training strategy Backbones 5-shot 1-shot
Acc. (%) AUROC Acc. (%) AUROC

Baseline Res12 86.8 (0.2) 85.9 (0.3) 70.4 (0.2) 78.5 (0.1)
DS-ResNet18 69.2 (2.9) 74.8 (1.7) 53.7 (2.2) 70.3 (1.2)

PreT (SimCLR) Res12 83.3 (1.1) 83.8 (0.9) 68.7 (1.5) 77.1 (0.5)
DS-ResNet18 59.0 (2.7) 69.3 (0.9) 45.8 (2.0) 65.7 (0.3)

KD (Hubert) Res12 87.0 (0.5) 85.3 (0.1) 70.3 (0.8) 78.1 (0.4)
KD (Wav2vec) DS-ResNet18 70.8 (0.5) 75.5 (0.6) 55.0 (0.3) 70.6 (0.3)

ALL Res12 93.1 (0.2) 86.9 (1.7) 78.3 (0.4) 75.4 (1.0)
DS-ResNet18 88.0 (1.3) 82.1 (2.2) 71.7 (1.2) 72.1 (2.3)

Ours: AuxSL Res12 95.6 (0.3) 94.1 (0.6) 85.5 (0.2) 84.3 (1.4)
DS-ResNet18 90.8 (0.3) 89.2 (0.9) 77.4 (1.0) 80.2 (1.8)

on validation performance.
Self-supervised learning on auxiliary data. It is well-known
that self-supervised learning is challenging for small mod-
els [24, 25], and we empirically demonstrate that SSL is also
ineffective for lightweight keyword spotting models. Despite
extensive data augmentation and hyperparameter tuning, MTL
with SSL and KD achieve limited performance improvement.
Moreover, PreT degrades performance compared to the base-
line, which trains the model on randomly initialized parameters.
In small-footprint keyword spotting models, learning invariant
information with SSL-based pre-training hinders the creation of
keyword representations. Among the SSL methods, PreT-Big
shows significantly better performance than the baseline. How-
ever, PreT-Big utilizes large feature extractors of size 300M,
while other models use BC-ResNet8 that size is around 300K.
Supervised learning on auxiliary data. Different from PreT
with SSL, pre-training with SL boosts the performance of the
baseline, which helps to learn keyword representations. We ob-
serve that the ALL method, which uses both datasets together
for FS-KWS, is more beneficial for representation learning of
small models than SSL, even in the presence of a domain gap
between the two datasets. This naive approach benefits from
well-organized word-like speech data for keyword representa-
tion learning. Our AuxSL adopts a different path for the aux-
iliary data through the MTL framework, which results in sig-
nificant performance improvement as the model learns useful
information for the target task from the auxiliary data.

4.4. Evaluation on Various Architecture and Model Size

To evaluate the effectiveness of our proposed method on various
architectures and model sizes, we conducted experiments using
three different backbone architectures: BC-ResNet, Res12, and
DS-ResNet18. We applied the same training and evaluation set-
tings as in the first sub-section, except for changing the back-
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Figure 4: A performance comparison on various model size.

bone architecture. As shown in Table 3, we apply the competi-
tive methods to other backbones, Res12 and DS-ResNet18, but
the performance improvements are marginal, similar to the re-
sults obtained with BC-ResNet8. Our proposed MTL approach
outperforms other training strategies.

In Fig. 4, we observe that the performance of all methods,
including the baseline, SSL, and SL, improves as the feature
extractor size increases. However, SSL decreases performance
for tiny models, such as BC-ResNet1 (9.2K), compared to the
baseline. Remarkably, our proposed AuxSL approach applied to
the smallest model (BC-ResNet1) outperforms other methods,
including the largest model (BC-ResNet8). This result demon-
strates the effectiveness of our method in learning discrimina-
tive representations even in extremely low-resource settings.

5. Discussion and Conclusion
In this paper, we addressed the challenge of few-shot keyword
spotting (FS-KWS) by proposing a framework that leverages
commonly available reading speech data as auxiliary data. Our
approach has two main contributions: (1) the creation of a well-
organized and balanced keyword dataset, LibriWord, and (2)
AuxSL: multi-task learning (MTL) with an additional classi-
fier to minimize the domain gap between in-domain and aux-
iliary data. Our results have shown that creating a keyword-
balanced dataset is a practical approach for training lightweight
keyword-spotting models. Moreover, we demonstrated the su-
periority of the proposed learning approach through extensive
experiments, as evidenced by the improved performance in the
FS-KWS benchmark. While our approach has achieved promis-
ing results, we recognize that there may be other techniques to
mitigate domain differences between datasets, such as RFN [39]
and DSBN [40]. We leave it as future work to explore and ana-
lyze the effectiveness of these methods in a scenario where there
is a large domain gap between in-domain and auxiliary data.
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