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Abstract

Expressive text-to-speech (TTS) can synthesize a new speaking
style by imitating prosody and timbre from a reference audio,
which faces the following challenges: (1) The highly dynamic
prosody information in the reference audio is difficult to ex-
tract, especially, when the reference audio contains background
noise. (2) The TTS systems should have good generalization for
unseen speaking styles. In this paper, we present a noise-robust
expressive TTS model (NoreSpeech), which can robustly trans-
fer speaking style in a noisy reference utterance to synthesized
speech. Specifically, our NoreSpeech includes several compo-
nents: (1) a novel DiffStyle module, which leverages powerful
probabilistic denoising diffusion models to learn noise-agnostic
speaking style features from a teacher model by knowledge dis-
tillation; (2) a Vector Quantization (VQ) block, which maps the
style features into a controllable quantized latent space for im-
proving the generalization of style transfer; and (3) a straight-
forward but effective parameter-free text-style alignment mod-
ule, which enables NoreSpeech to transfer style to a textual in-
put from a length-mismatched reference utterance. Experiments
demonstrate that NoreSpeech is more effective than previous
expressive TTS models in noise environments.

Index Terms: Text-to-speech, style transfer, diffusion model,
knowledge distillation, vector quantization

1. Introduction

Text-to-speech (TTS) [1, 2] aims to transform text into almost
human-like speech, which attracts broad interest in the deep
learning community. TTS is a key technology for spoken lan-
guage understanding [3, 4, 5, 6]. Nowadays, TTS models have
been extended to more complex scenarios, including multiple
speakers timbre, emotions, and speaking styles for expressive
synthesis [7]. Style modeling and transferring have been studied
for decades in the TTS community: Wang et al. [8] proposed
to use global style tokens to control and transfer the global
style. Li ef al. [9] adopt a multi-scale style encoder to assist
synthesis expressive speech. Yang et al. [10] propose to use
text prompt control speaking style. Min et al. [11] proposed
Meta-StyleSpeech, which uses a meta-learning training strat-
egy for multi-speaker TTS synthesis. Huang et al. [7] proposed
a multi-level style adaptor to transfer speaking style. How-
ever, these methods assume that the reference audio is recorded
in ideal environments (without noise interference). This as-
sumption prevents expressive TTS models from being applied
in many real-world scenarios, e.g. the reference audio recorded
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Figure 1: The FO and energy comparisons of clean speech (the
first row) and noisy speech (the second row).

by users may include noise. Zhang et al. [12] demonstrated
that the fundamental frequency (FO) and energy can be affected
by adding noise, which are key components of speaking style,
as Figure 1 shows. To eliminate the effect of noise in refer-
ence audio, many methods have been proposed [13, 14, 15, 16].
These methods can be classified into two types: (1) using a pre-
trained speech enhancement model to eliminate noise in refer-
ence audio [13], which heavily relies on the performance of a
speech enhancement (SE) model; (2) decomposing the noise
information via adversarial training [15] or information bottle-
neck [14, 16]. However, the speech enhancement can introduce
unexpected distortions and the adversarial training and informa-
tion bottleneck strategies need complex parameter setting and
training tricks, which makes them hard to be widely applied.

In this paper, instead of extracting style information from
noisy reference audio, we propose to reconstruct style infor-
mation by learning relevant parameters for distribution model-
ing. Specifically, we propose a knowledge distillation based
conditional diffusion model [17] that can directly generate style
representation in a latent space conditioned on the noisy ref-
erence audio, named DiffStyle. Our DiffStyle is inspired by a
popular diffusion-based speech enhancement model, CDiffuSE
[18], which has shown that diffusion models are capable of
restoring clean speech component from a noise-contaminated
speech signal. The CDiffuSE model reconstructs clean wave-
form conditioned on a noisy spectrogram. The DiffStyle mod-
ule in NoreSpeech is different from the CDiffuSE model in the
following aspects: (1) Instead of generating highly stochastic
time-domain audio signal (1 second composed of thousands of
sample points), DiffStyle works on the more compressed frame-
level features. (2) The CDiffuSE model reconstructs complete
speech signal in time domain, while DiffStyle learns to gen-
erate prosody-related style features supervised by a pre-trained
teacher model. Furthermore, we explore two aspects of improv-
ing the generalization of style transfer: (1) To transfer style to
a textual input from a length-mismatched reference utterance,
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Figure 2: (a) shows the overview of our proposed NoreSpeech. (b) and (d) show the details of DiffStyle. In subfigure (c), LR denotes
the length regulator, the decoder includes 4 Transformer blocks and one flow-based post-net, which is the same as [7]. Subfigure (d)
shows the details of training and inference stages of DiffStyle. Note that the style teacher model is freezing during the training process.

we propose a parameter-free style-alignment module; (2) To
transfer unseen speaking styles, we use a Vector Quantization
(VQ) module [19] to map the style features into a controllable
latent space, which has previously been shown to be an effec-
tive method [7]. Experimental results show that our proposed
NoreSpeech has better performance than baselines in noise en-
vironments. In the following, we first introduce the details of
NoreSpeech, then we present the experiments in Section III. We
give the conclusion of this study in Section IV.

2. Proposed method

In this section, we first formulate the noise-robust expressive
TTS model for style transfer. Then we overview our proposed
noise-robust expressive TTS model (NoreSpeech), following
which we introduce several critical components, including the
style teacher model, DiffStyle, and feature fusion module.

2.1. Problem formulation

Style transfer aims to generate high-quality and similarity
speech samples with previously unseen style (e.g., such as
speaker identity and style) derived from a reference utterance.
Thanks to the development in TTS, the state-of-the-art (SOTA)
style transfer TTS models can realize good style transfer perfor-
mance with high-quality reference audio. In this paper, we fo-
cus on a more challenging setting: the reference utterance con-
tains background noise. Similar to Sytler [14], we conjecture
that speaker identity information can be extracted from noisy
reference with a noise-robust speaker encoder. However, the
style information will be affected by noise [12]. Thus, the prob-
lem is to obtain style features from noisy reference similar to
those from clean reference.

2.2. Framework overview

We adopt one of the SOTA style transfer TTS models, Gener-
Speech [7] as the backbone. The overall architecture of Nore-
Speech has been showed in Fig. 2. NoreSpeech is made up of
four parts: (1) Encoder, which maps the phoneme sequence into
deep representations; (2) DiftStyle, which generates style fea-
tures based on a noisy spectrogram; (3) Feature fusion, which
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combines style and text features; (4) Decoder, which maps the
features into mel-spectrogram. The encoder and decoder follow
the same structure in the previous work [7].

2.3. DiffStyle

Fig. 2(b) shows the diagram of DiffStyle, which includes three
main parts: a conditional diffusion model, a speaker encoder,
and two Vector Quantization (VQ) [19] blocks. The condi-
tional diffusion model aims to generate fine-grained style fea-
tures that represent the speaker’s style, and the speaker encoder
aims to generate a global speaker embedding that represents the
speaker’s identity. Both of them take the noisy reference utter-
ance as input. In the following, we will introduce the speaker
encoder and conditional diffusion models.

2.3.1. Speaker encoder

We use a generalizable wav2vec 2.0 model [20] to capture the
global speaker identity characteristics. Wav2vec 2.0 is a re-
cently proposed self-supervised framework for speech represen-
tation learning. In our experiments, we add an average pooling
layer and one fully-connected layer on top of the wav2vec 2.0
encoder, which allows us to finetune the encoder on classifica-
tion tasks. The AMsoftmax [21] loss is employed during fine-
tuning.

2.3.2. Conditional diffusion model

The conditional diffusion model aims to generate noise-
agnostic style features based on a noisy audio. To realize this,
we adopt the idea of knowledge distillation, which uses a style
teacher model to extract style features from clean speech, then
the style features are used as the training objective of the diffu-
sion model.

Style teacher models: In this paper, we explore two types
of style teacher: (1) Supervised learning (SL) based expres-
sive TTS model, GenerSpeech [7], which can effectively ex-
tract style features from clean speech. (2) Self-supervised learn-
ing (SSL) [22, 23] based speech decomposition model, NANSY
[23], which can extract linguistic and style features from clean
speech. We pre-train GenerSpeech and NANSY models in ad-
vance, then we take these two kinds of style teacher models to



guide the training of NoreSpeech, denoting as NoreSpeech (T-
SL) and NoreSpeech (T-SSL), respectively.

Diffusion model: Diffusion probabilistic (diffusion for short)
models [24] have been proved as a powerful generation model
in several important domains, e.g. image [25], speech [26]
and audio [27, 28] fields. The basic idea of diffusion model
is to train a neural network for reversing a diffusion pro-
cess. Given iid. samples {0 € RP} from an un-
known data distribution pgqtq (o), diffusion models try to
approximate pdata (o) by a marginal distribution pg(xo)
S po(zo, - xr_a|er) - pler)dryr.

To implement our conditional diffusion model, we adopt the
idea of conditional speech enhancement [18], which uses a
shallow convolution layer 74() to reshape the noisy mel-
spectrogram, then feeds it into a WaveNet-structure diffusion
model. In our study, o represents style features rather than
waveform. The training loss function can be defined as

Laifr = EsT(y.)yn,e~n(0,0),t [||€ = €0(@e, 1,70 (yn))|[3]
M
where ST denotes that style teacher model. y. denotes clean
mel-spectrogram, y, denotes the noisy mel-spectrogram. ¢ is
the index of time step. €g denotes the learnable parameters.

2.3.3. Vector Quantization

Considering the variability of generated style features, we use a
Vector Quantization block [19] to map the generated style fea-
tures into a controllable latent space. We define a latent em-
bedding space e € R**# where K is the size of the discrete
latent space, and H is the dimensionality of each latent embed-
ding vector e;. In our experiments, we set K = H = 256.
To make sure that the representation sequence commits to an
embedding and its output does not grow, a commitment loss is
used:

Lo = ||z (@) — sgle]|l3 @

where z.(x) is the output of the vector quantization block, and
sg[-] stands for the stop gradient operator.

2.4. Feature fusion

The feature fusion module aims to fuse the phoneme represen-
tation and style features. Considering the dimension mismatch
between fine-grained style features and the output of the text en-
coder, we design a parameter-free style-align module to solve
this problem. Assume that the time dimensions of style fea-
tures and text features are ts¢yie and tieq¢, respectively. When
tstyle <ttewt, we directly adopt a linear interpolation operation
to upsample the style features. When ts¢y1e >ttert, We first cal-
culate the ratio between ¢y and ticr¢, and then we average
consecutive frames of style features based on the ratio to down-
sample the style features.

2.5. Pre-training and loss function

Speaker encoder pre-training: As section 2.3.1 described, we
fine-tune the wav2vec 2.0 encoder on LibriTTS dataset, we im-
plement this based on s3prl framework. !.

Pre-training style teacher: For GenerSpeech teacher, we re-
produce GenerSpeech following their paper [7]. The only dif-
ference is that we do not use emotion embedding. We train Gen-
erSpeech on the LibriTTS dataset [29]. After that, we use the
style adaptor of Generspeech to extract fine-grained prosodic

Uhttps://github.com/s3prl/s3prl
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features from clean speech. For NANSY teacher [23], we first
train NANSY 2 on LibriTTS dataset. Then, we use the pre-
trained model to extract style features. Note that NANSY can
extract linguistic, pitch and energy information from the speech,
we concatenate the pitch and energy information as the target
style features.

Loss function: Our NoreSpeech model can be trained in a end-
to-end manner. The training loss is formulated as follows:

L= Ac(iur + [«mel + £post + ['c + cdiff (3)

where L4, denotes the duration prediction loss. L., is the
mel-spectrogram reconstruction loss. Ly denotes the nega-
tive log-likelihood of the post-net [7].

3. Experiment
3.1. Dataset, training setting and baseline models

We train NoreSpeech on LibriTTS-clean dataset [29]. To simu-
late noisy environments, we use the background sound from the
acoustic scene classification task of DCASE 2019 Challenge
[30]. All utterances of the noisy speech are mixed with noise
sampled from DCASE with an SNR randomly chosen from 5
dB to 25 dB. To evaluate NoreSpeech, we randomly choose
20 sentences test data from LibriTTS test set, which does not
appear on the training stage. We conduct preprocessing on
the speech data: 1) converting the sampling rate of all data to
16kHz; 2) extracting the spectrogram with the FFT size of 1024,
hop size of 256, and window size of 1024 samples; 3) convert-
ing it into a mel-spectrogram with 80 frequency bins. We train
NoreSpeech for 200,000 steps. In the first 50,000 steps, we di-
rectly feed the outputs of the style teacher to the feature fusion
module. After that, we use the generated style features by the
diffusion model as input. For the DiffStyle, the cosine sched-
ule strategy ; = cos(0.57 - @)2 is used for any step t,
where s = 0.008 and 7" = 100. We utilize HiFiGAN [31] as
the vocoder to synthesize waveforms from the generated mel-
spectrogram.

3.2. Evaluation metrics and Baseline models

For subjective evaluation, we conduct crowd-sourced human
evaluations with MOS (mean opinion score) for naturalness and
SMOS (similarity mean opinion score) [11] for style similarity
on Amazon Mechanical Turk. For objective metrics, we adopt
Mel-cepstral distorion (MCD) [32] and Short-Time Objective
Intelligibility (STOI) [33] to evaluate the speech quality, and FO
Frame Error (FFE) [34] to evaluate the style similarity.
Baseline models: We compare the quality and similarity of
generated audio samples of our NoreSpeech with other sys-
tems, including 1) Ground Truth (GT) audio; 2) GT (Mel+HiFi-
GAN), which means we convert the GT audio into mel-
spectrograms and then convert them back to audio using HiFi-
GAN; 3) Expressive FastSpeech2 [2], which uses the speaker
encoder to extract speaker embedding. For a fair comparison,
we adopt the same speaker encoder in NoreSpeech for FS2. 4)
Styler [14], which uses adversarial training and information bot-
tleneck to eliminate noise; 5) GenerSpeech [7], one of the SOTA
style transfer TTS models.

3.3. Experimental results

Table 1 reports the subjective and objective metrics compari-
son between NoreSpeech and other baseline models. we have

Zhttps://github.com/dhchoi99/NANSY



Table 1: Quality and style similarity results of style transfer. MCD, STIO and FFE are adopted as objective metrics. MOS and SMOS,
as subjective metrics, are presented with 95% confidence intervals. For the denoised audio, we one of the SOTA SE models [17] to

denoise the noisy reference.

Method MCD| STIOt FFE| MOSt SMOS?T
GT - - - 4.35 4+ 0.09 -

GT(Mel+HiFi-GAN) 4.33 0.971 0.058 4.324+0.09 4.31+0.09
FastSpeech2 (Reference is clean audio) [2] 5.43 0.620 0.28 3.80 £0.09 3.86 4+ 0.09
FastSpeech2 (Reference is noisy audio) 5.56 0.583 0308 3.73+£0.12 3.7240.11
Styler (Reference is noisy audio) [14] 5.37 0.655 0308 3.86+0.11 3.8940.11
GenerSpeech (Reference is clean audio) [7] 5.29 0.66 0250 3934+0.11 4.09+0.11
GenerSpeech (Reference is noisy audio) 5.45 0.619 0304 3.87+0.12 3.81+£0.13
GenerSpeech (Reference is denoised audio) 5.36 0.602 0.257 3.89+0.11 3.954+0.12
NoreSpeech (T-SL) (Reference is noisy audio) 5.25 0.678 0.242 399+ 0.10 4.0640.11
NoreSpeech (T-SSL) (Reference is noisy audio) 5.02 0.662 0209 4.114+0.09 4.14 4+0.09

Table 2: The AXY Preference test results. If 7-point score > 0 denotes NoreSpeech has better performance. Preference is calculated
based on 7-point score, where 7-point score = 0 denotes raters think the performance of NoreSpeech and baselise is “about the same”.

Parallel Style Transfer Non-Parallel Style Transfer
Baseline 7-point score Preference (%) 7-point score Preference (%)
‘ Baseline Same NoreSpeech ‘ Baseline Same NoreSpeech
FS2 1.07 26% 30% 44% 1.48 35% 17% 48%
Styler 1.30 25% 21% 54% 1.26 29% 21% 50%
GenerSpeech 1.20 29% 27% 44% 1.58 26% 12% 62%

Table 3: Audio quality and similarity comparisons for abla-
tion study. CMOS denotes comparative mean opinion score,
CSMOS denotes comparative similarity mean opinion score.

Setting CMOS | CSMOS
NoreSpeech 0.0 0.0
w/o VQ -0.07 -0.12
w/o Style-Align -0.01 -0.04
w/o DiffStyle -0.24 -0.32

the following observations: (1) Noise has a significant impact
on style transfer performance, e.g. the SMOS of GenerSpeech
drops from 4.09 to 3.81 when adding noise into reference au-
dio. (2) Comparing to previous SOTA expressive TTS mod-
els (Styler and GenerSpeech), our NoreSpeech has better style
transfer ability on noisy environment in both subjective and ob-
jective evaluations. (3) By comparing NoreSpeech (T-SL) and
NoreSpeech (T-SSL), we can see that using an unsupervised
speech decomposition (NANSY) as a teacher can bring better
performance than using GenerSpeech as the teacher model. We
conjecture that NANSY model can extract more robust style
features from reference audio due to its self-supervised training
strategy. We believe that better style teacher model can be ex-
plored to improve the performance of NoreSpeech.

To further evaluate NoreSpeech’s style transfer ability, an AXY
test [7] of style similarity is conducted to assess the style trans-
fer performance, where raters are asked to rate a 7-point score
(from -3 to 3) and choose the speech samples that sound closer
to the target style in terms of style expression. We conduct par-
allel and non-parallel style transfer.

Parallel style transfer (PST): PST denotes that the text input is
the same as the reference’s content, Table 2 presents the results.
Compared to FS2, Styler and Generspeech, our NoreSpeech has
better style transfer performance.

Non-parallel style transfer (N-PST): We also explore the ro-
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bustness of our NoreSpeech in N-PST, in which a TTS system
synthesizes different text in the prosodic style of a reference sig-
nal. We can observe that our NoreSpeech significantly improves
the model to inform the speaking style, allowing a noisy refer-
ence sample to guide the robust stylistic synthesis of arbitrary
text. This validates the effectiveness of the straight-forward
text-style alignment module in NoreSpeech.

3.4. Ablation study

‘We have conducted the ablation study to show the effectiveness
of each components in NoreSpeech, as shown in Table 3. In our
ablation study: (1) To validate the effectiveness of the proposed
style-align module, we replace it with the Mel Calibrator [14],
which is also parameter-free and has been proved as a better
fusion strategy than attention mechanism [35]; (2) To validate
our proposed Diffstyle module, we replace it with the multi-
level style adaptor [7], which extracts multi-level style features.
We have following observations: (1) Our proposed Style-Align
module is more effective than Mel Calibrator [14]. (2) VQ mod-
ule is an important part in our proposed method. (3) DiftStyle
module significantly influence the style transfer performance,
which shows the effectivess of our proposed Diffstyle.

4. Conclusions

In this paper, we proposed a noise-robust expressive TTS
model, named NoreSpeech. Benefitting from DiffStyle and
style-align modules, NoreSpeech presents robust stylistic syn-
thesis of arbitrary text, even if the reference audio includes
noise. We proved that DiffStyle can be trained with two types
of style teacher model, which shows DiffStyle can be further
improved through training a better teacher model. We believe
DiffStyle can also be used for other tasks (e.g. image style trans-
fer). In the future, we will explore better style teacher models
and reduce the sample step in DiffStyle.
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