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Abstract
Enabling continual learning (CL) from an ever-changing envi-
ronment is highly valuable, but it poses significant challenges
for spoken keyword spotting (KWS), which simultaneously
deals with both variability in acoustic characteristics of speech
signals and catastrophic forgetting issues. In this paper, we pro-
pose a novel framework for replay-based CL in KWS that uses
a Dual-Memory Multi-Modal (DM3) structure to enhance gen-
eralizability and robustness. Our approach leverages short-term
and long-term models to learn near-term and long-term knowl-
edge in an adaptive manner with a dual-memory structure, while
also exploiting the consistency of multiple speech perturbations
to improve the robustness with a multi-modal structure. Addi-
tionally, we introduce a class-balanced selection strategy that
uses confidence scores to sort training samples. Experiments
demonstrate the effectiveness of our method over competitive
baselines in class incremental learning and domain incremental
learning KWS settings.
Index Terms: Keyword Spotting, Continual Learning, Confi-
dence Selection, Diversity Enhancement

1. Introduction
Spoken keyword spotting (KWS) [1, 2, 3, 4] is the task of iden-
tifying specific keyword phrases within spoken utterances. It
serves as a foundational component on many mobile and edge
devices, such as voice assistants. Massive end-to-end models
[3, 5, 6, 7, 8, 9] have demonstrated impressive performances on
standard KWS tasks.

With the increasing interconnectedness of the world, the
need for KWS systems that can adapt and learn on-the-fly has
become more acute. Nevertheless, the approach of re-training
a model from scratch for each new task entails an enormous
amount of time and cost, which is often not an ideal solution.
Continual learning (CL) for KWS presents several challenges
due to several factors. One major challenge is developing a
model that can adapt to dynamic environments where the data
distribution is constantly changing while avoiding catastrophic
forgetting problem [10]. Another challenge is the limited avail-
ability of annotated data and the non-stationary characteristics
of the speech signals, making it difficult for the model to gen-
eralize effectively. Addressing these challenges requires careful
consideration of the design of CL algorithms.

As far as we know, related works enabling CL for KWS
tasks appear to be infrequently studied. [11] proposes a net-
work instantiator to generate the task-specific sub-networks for
remembering previously learned keywords. [12] introduces a
replay-based method in which a diversity-aware sampler is de-
signed to select a diverse set from historical and incoming key-
words by calculating classification uncertainty. Other related

work [13, 14, 15] involves few-shot fine-tuning [16] to perform
positive transfer from source domain for new scenarios in KWS
task. All these methods are mainly designed to preserve knowl-
edge from previous tasks, without much emphasis on speech
characteristics.

Given the effectiveness of the replay-based approach [12,
17] in CL tasks, we propose a novel replay-based CL ap-
proach that addresses the issues mentioned earlier. Our ap-
proach, called dual-memory multi-modal, aims to improve gen-
eralizability and robustness. To achieve this, we utilize a dual-
memory structure that maintains both short-term and long-
term semantic models. This is inspired by the brain working
mechanism[18] and helps us to accumulate and consolidate in-
formation in a more effective manner. The short-term model
performs well on recent tasks, while the long-term model prior-
itizes retaining information on older tasks. In addition, we ex-
ploit the consistency of speech diversity by multiple speech per-
turbations to enhance the model robustness with a multi-modal
structure. This enhances the performance of our method in chal-
lenging environments where the speech signal may be corrupted
or degraded. To mitigate catastrophic forgetting, we introduce
a class-balanced selection strategy over sorted training samples
based on confidence scores similar to curriculum learning. This
helps to improve the overall performance of our method without
significantly increasing training time. Our method is evaluated
on a continual KWS benchmark, and experiments demonstrate
its effectiveness and superiority over competitive baselines in
both class incremental learning and domain incremental learn-
ing settings. To sum up, our contributions are threefold:

• A replay-based dual-memory multi-modal framework for
continual KWS tasks is proposed, which consists of a dual-
memory structure that better balances knowledge learning
between long-term and short-term periods and a multi-modal
structure that enhances robust representation with multiple
diversity speech inputs.

• A class-balanced memory selection rule that selects diverse
and representative replaying examples is proposed.

• Extensive experiments conducted on a continual KWS
benchmark demonstrate the effectiveness of our proposed
methods compared to competitive baselines.

2. Methodology
2.1. Problem Formulation

In this work, we focus on CL for a sequence of keyword spotting
tasks {τ1, τ2, ..., τT }, where we learn a model fθ(.), θ is a set of
parameters shared by all tasks. Each task τt contains a different
set of training pairs (xt, yt) with distribution Dt, where xt are
the audio utterances and yt are the keyword labels. We aim to
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Figure 1: The diagram of the proposed DM3 framework for
continual KWS with confidence selection and diversity enhance-
ment, which comprises of memory buffer, dual-memory compo-
nent, and multi-modal component.

minimize the generalization error on all tasks after learning all
tasks in the sequence.

R(fθ) =
T∑

t=0

E(xt,yt)∼Dt [Lkws(f(xt; θ), yt)] (1)

where Lkws denotes the cross-entropy loss.
In this work, we perform a comprehensive and thorough

model evaluation under two CL settings: class incremental
learning (Class-IL) and domain incremental learning (Domain-
IL). In the Class-IL setting, different classes of data are added
with each subsequent task and the model must learn to distin-
guish not only amongst the classes within the current task but
also across previous tasks. In the Domain-IL setting, the classes
remain the same in each subsequent task but the input distribu-
tion changes.

2.2. Dual-Memory Multi-Modal for Continual KWS

To deal with catastrophic forgetting and speech vulnerability
problems, a Dual-Memory Multi-Modal (DM3) framework is
proposed, which consists of three parts: memory buffer, dual-
memory component and multi-modal component. The dual-
memory and multi-modal components are formed with the same
model unit. The detailed introduction of each module is as fol-
lowed.
Memory Buffer In this work, the memory buffer is used as
a fixed-size class-balanced buffer. Specifically, a fixed number
of examples from each keyword class are stored in the memory
buffer. This ensures that the model has access to a balanced
representation of each class, even if the frequency of each class
changes over time.
Model Unit TC-ResNet [7] utilizes the advantages of temporal
convolution to enhance the accuracy and reduce the latency for
real-time KWS on mobile devices. In our work, TC-ResNet-8
is chosen as the model unit of DM3 following [11, 12]. The
model has three residual blocks and 16, 24, 32, 48 channels
for each layer including the first convolution layer. The cross-
entropy loss as one of the objective functions is used to update
the model:

Lce = − 1

n

n∑

i=1

yi log(pi) (2)

where n is the keyword class.

Dual-Memory Structure The component maintains long-term
and short-term models. The long-term model aims to accumu-
late and consolidate information throughout the training trajec-
tory and the short-term model tends to be better at learning re-
cent tasks. The logit of the one with the highest softmax score
for the ground-truth class in both models is used as the final
output (Line 8 in Algorithm 2). The long-term and short-term
models are updated by taking an exponential moving average of
the working model’s weights θw:

θlt ←− αltθlt + (1− αlt)θw if rlt > a ∼ U(0, 1) (3)

θst ←− αstθst + (1− αst)θw if rst > b ∼ U(0, 1) (4)

where θlt and θst are long-term and short-term models’s
weights respectively. αlt and αst are decay parameters. rlt
and rst is the update rate. A higher update rate represents that
the model is updated more frequently. The parameters rlt, rst,
αlt and αst are set to 0.5, 0.9, 0.999 and 0.999 respectively.

We use an L2 loss based on the target representation from
dual-memory output z and the working model prediction ẑ:

Lmse = |z − ẑ|2 (5)

Multi-Modal Structure The component is designed to learn
invariant representations under multiple distortions of a sample
[19, 20]. Concretely, we first generate M different distorted
views of training speech using a series of augmentations besides
itself. Then the working model generates representations of one
clean view and M distorted views. The component is trained
by maximizing the similarity of representations between clean
speech and distorted versions.

We use Barlow Twins’s objective function [21, 22] as a rep-
resentation consistency metric donated by Lcons. The overall
objective function of DM3 for CL on KWS can be written as
the following:

Ltotal = Lce + λLmse + γLcons (6)

where the weight parameter λ and γ are set to 0.15, 0.3 respec-
tively.

2.3. Memory Buffer Selection Rule

Since only a small number of examples are stored in the mem-
ory buffer, we need to carefully select them in order to utilize
the memory bufferM efficiently that balance diversity and rep-
resentativeness [23]. The key to sample selection was to deter-
mine the learning priority of each sample similar to curriculum
learning. The memory buffer selection rule is conducted af-
ter each task training (Line 20 Algorithm 2) and can be broken
down into the following two steps:
Confidence Measurement The speech examples to be pro-
cessed are from the current task, along with the memory buffer.
By feeding each speech data into the working model, the soft-
max probability of the ground-truth class is obtained, which
serves as the confidence score for the current sample. Then
sorting the entire training set for each category in descending
order of confidence scores.
Class-balance Memory Update Afterward, new speech ex-
amples in memory buffer are constructed by sampling at equal
intervals in accordance with the class-balance strategy.

The memory selection algorithm is shown in Algorithm 1.
2.4. Training Formulation

During each training step, the main model receives the training
batch Xb from current data stream Dt and a random batch of
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Algorithm 1 Memory Buffer Selection Rule
Input: Memory bufferM, Training data Dt for task t
Initialize: D =M⋃Dt

1: for Sample (xi, yi) ∈ D do
2: zi ←− f(xi; θw)

3: pi ←− σ(zi)
(yi) ▷ softmax score of ground-truth class

4: end for
5: for Each class k do ▷ select samples by class
6: Dk

sort ←− sort(Dk; p)
7: Mk ←− IntervalSampling(Dk

sort)
8: end for
9: returnM

exemplars Xm from the memory bufferM. The memory buffer
is updated with Reservoir Sampling [24] in the initial task.

For inference, we use the working model since it learns effi-
cient representations for generalization in our experimental se-
tups. The training details are shown in Algorithm 2.

Algorithm 2 DM3 Learning for Continual KWS
Input: Training tasks {τ1, τ2, ..., τT }, Update rates γp and γs,
Perturbation strategies Ps

Initialize: θw = θlt = θst,M = {}
1: for t = 1, . . . , T do
2: for Batch Xb ∈ Dt, Xm ∈M do
3: for Aug ∈ Ps do
4: Xa

b ←− Aug(Xb)
5: end for
6: (X,Y ) = {(Xb, Yb), ∗(Xa

b , Yb), (Xm, Ym)}
7: Zst, Zlt ←− f(Xm; θst), f(Xm; θlt)

8: Z ←− Zst if σ(Zst)
(Ym) > σ(Zlt)

(Ym) else Zlt

9: Lce = CrossEntropy(X,Y )
10: Lmse = |Z − σ(f(Xm; θw))|2
11: Lcons = Consistency(f(Xb; θw), f(∗Xa

b ; θw))
12: Update multi-modal component with Eq. 6
13: a, b ∼ U(0, 1)
14: Update long-term model with Eq. 3
15: Update short-term model with Eq. 4
16: if t = 1 then
17: M←− Reservoir(M; (Xb, Yb))
18: end if
19: end for
20: M←−MemorySelection(M⋃Dt)
21: end for
22: return θw

3. Experiments
3.1. Dataset

we conduct experiments on the well-known Google Speech
Command V1 (GSC-V1) dataset [25]. It includes 64,727 one-
second utterance clips with 30 English keyword categories. Fol-
lowing [11, 12], we first process all the data with a sample rate
of 16kHz. We then split the dataset into two subsets, 80% for
training and 20% for testing, respectively.

To verify and evaluate the performance of the proposed ap-
proach, raw data needs further processing to simulate CL sce-
narios. For the Class-IL setting, the first task contains 15 unique
keywords and the rest data is split into 5 tasks. Each rest task
includes 3 new unique keywords, which are unseen in previous
tasks. For the Domain-IL setting, we split a subset of about
50% as the first task and the remaining 5 tasks contain 10% of

the data. Each task contains all categories.

3.2. Experimental Setup

Training Details During the training stage, we utilize the Mel-
frequency cepstrum coefficients (MFCC = 40) as inputs. The
network is optimized by Adam with a learning rate of 0.1. All
experiments are conducted on NVIDIA RTX 2080Ti with a
batch size of 128 and training epochs of 50. Five perturbation
strategies, including Clipping Distortion [26], TimeMask [26],
Shift [27], PitchShift [27] and FrequencyMask [26] are applied
as speech augmentation.
Compared Models SGD provides the lower bound with stan-
dard training on sequential tasks, and JOINT gives the upper
bound on performance when the model is trained on the joint
distribution. EWC [28] incorporates a quadratic penalty to reg-
ularize parameters of the model that are important to past tasks.
RWalk [29] both calculate the importance for each parameter
and store samples from past tasks. The others are all replay-
based methods proposed in previous works.

Table 1: Comparison with prior methods on Class-IL and
Domain-IL settings. ∗ indicates that the values in this column
need to be multiplied by 0.01. Bold values indicate the best re-
sult, underlined values indicate the second best result.

Buffer Method Class-IL Domain-IL
ACC ↑ BWT ↑ ACC ↑ BWT ↑ ∗

- Joint 95.94 - 95.94 -
SGD 36.19 -0.269 94.24 -0.247

- EWC [28] 77.80 -0.088 94.14 -0.091

200

NR [30] 50.19 -0.189 94.32 -0.233
iCaRL [31] 80.01 -0.084 91.92 -0.955

BiC [32] 80.38 -0.080 91.91 -0.957
RK [12] 81.46 -0.068 94.13 -0.253

RWalk [29] 84.33 -0.061 94.77 -0.020
DM3 86.97 -0.038 94.56 -0.054

500

NR [30] 57.64 -0.151 94.31 -0.223
iCaRL [31] 85.35 -0.056 92.17 -0.999

BiC [32] 83.08 -0.066 93.00 -0.407
RK [12] 88.30 -0.041 93.89 -0.340

RWalk [29] 90.15 -0.032 94.76 -0.031
DM3 91.77 -0.023 94.81 0.09

1000 DM3 93.32 -0.016 94.91 0.063
2000 DM3 93.80 -0.015 94.96 -0.032

3.3. Experimental Results

We compare our method with regularization-based and replay-
based methods across different CL settings in terms of Average
Accuracy (ACC), Backward Transfer (BWT). As shown in Fig-
ure 1, the proposed method provides the highest performance
for almost all buffer size conditions, which demonstrates the
effectiveness of our approach in both Class-IL and Domain-
IL settings. Furthermore, as the memory buffer size increases,
the model performance will be further improved, especially in
the Class-IL setting, which is closer to the upper bound perfor-
mances.

Figure 2 shows how task-wise performance evolves as dif-
ferent models learn tasks sequentially. Compared to other mod-
els, our method consistently exhibits superior performance on
the test set in the initial task (Column T1), which demonstrates
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T1 T2 T3 T4 T5 T6

After T1

After T2

After T3

After T4

After T5

After T6

97.27

81.59 96.61

80.59 69.47 96.41

67.94 52.12 72.77 98.97

69.34 51.66 42.08 69.16 98.38

65.31 62.61 56.72 68.21 54.22 99

EWC

T1 T2 T3 T4 T5 T6

97.27

84.48 98.15

86.76 70.78 97.19

77.67 65.15 80.65 98.8

82.53 68.77 61.01 76.29 98.07

81.19 66.62 71.71 81.27 50.66 99

RWalk

T1 T2 T3 T4 T5 T6

96.85

77.67 95.84

78.83 68.77 95.5

72.4 56.67 77.97 97.08

74.17 61.06 70.65 77.06 94.35

73.68 54.74 68.4 70.62 78.42 96.85

iCaRL

T1 T2 T3 T4 T5 T6

97.27

88.23 95.14

79.91 87.05 93.81

67.3 63.38 87.19 98.02

73.31 59.14 65.02 79.81 98.22

67.37 60.29 67.07 73.54 83.06 98.85

RK

T1 T2 T3 T4 T5 T6

97.35

94.37 92.47

92.59 73.32 94.23

88.92 55.89 88.46 90.03

86.57 57.65 70.69 75.17 96.85

84.18 55.72 65.73 68.64 83.22 97.26

DM3

Figure 2: The performance comparison of different task-wise methods with 200 buffer size. The heatmaps provide the test set of each
task (x-axis) evaluated at the end of each sequential learning task (y-axis).

the effectiveness of the long-term memory model. Meanwhile,
our method achieves good performance on test sets of the cur-
rent and near-term tasks in each sequential learning. However,
we observe suboptimal performance in the mid-term task, espe-
cially as the number of tasks increases, which will be the focus
of our future work.

3.4. Ablation Study

Impact of Memory Buffer Selection Rule To evaluate the ef-
fectiveness of the memory buffer selection rule, we analyze the
performance differences with different selection rules. Table 2
illustrates the effectiveness of the class-balanced confidence
sampling strategy. In the class-balanced setting, randomly sam-
pled samples in the memory buffer with a small size may not
effectively match the original data distribution. Moreover, with-
out class-balanced constraints, samples of certain classes may
be completely missing, which further exacerbates the degrada-
tion of model performance.

Table 2: The performance comparison of different selection
rules, i.e., class-balance, class-imbalance, interval sampling,
random sampling, in terms of accuracy (%) on Class-IL and
Domain-IL, respectively.

Class-Balance Sampling Class-IL Domain-IL

! Interval 86.97 94.56
% Interval 72.85 94.01
! Random 85.94 94.52
% Random 64.99 93.98

Impact of Model Architecture To gain further insight into the
contribution of each component of our method, we systemati-
cally remove them and evaluate the performance of the model
in Table 3. The results show that both dual-memory and multi-
modal components contribute to the performance gains. Fur-
thermore, the short-term and long-term models are likely com-
plimentary to each other, and incorporating multi-view speech
enhancement facilitates learning more robust representations.
Impact of Memory Update In order to study the effect of
memory buffer update in the overall training process, we per-
form ablation study on the reservoir sampling and memory
buffer selection rule. The results are summarized in Table 3. In
conjunction with Figure 2, it is evident that utilizing the reser-
voir sampling strategy in initial task training has resulted in im-
proved performance (97.35% vs 97.27%). After removing the
memory buffer selection rule, the model training formulation is
similar to [18], and the results show that a reasonable memory
buffer update at the end of each task is necessary.
Impact of EMA update frequency Table 4 shows how the per-

Table 3: Ablation study on model architecture. w/o augmen-
tation models indicate removing the models fed with an aug-
mented speech from the multi-modal structure. w/o MemoryS-
election indicates that the memory buffer selection rule is re-
moved, while the reservoir sampling is applied across all tasks,
not just the initial task.

Model Class-IL Domain-IL

DM3 (200) 86.97 94.56

w/o Dual Memory 78.69 94.15
w/o Short-term 82.12 94.33
w/o Long-term 85.68 94.36

w/o Augmentation Models 86.09 94.40
w/ One Augmentation 86.76 94.34

w/o Reservoir 86.95 94.56
w/o MemorySelection 86.74 94.21

formance is affected under different frequencies for the long-
term and short-term models. Although there are some vari-
ations, they are still higher than baseline models in Table 1,
showing robustness of proposed method for update frequency.

Table 4: The performance comparison of the model at different
update frequencies for long-term and short-term models.

Long-term Short-term Class-IL Domain-IL

0.2 0.9 86.81 94.35
0.3 0.9 86.60 94.36
0.5 0.9 86.97 94.56
0.6 0.7 86.53 95.57

4. Conclusion
Enabling CL in an ever-changing environment remains a chal-
lenge for KWS. In this paper, we presented a new CL frame-
work called DM3 for KWS. Our empirical evaluation shows
the effectiveness of the proposed approach in mitigating forget-
ting in challenging CL scenarios. Experimental results indicate
the effectiveness of the proposed framework on standard KWS
benchmarks including Class-IL and Domain-IL settings.
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