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Abstract  

In many speech separation methods, the contextual information 

contained in the feature sequence is mainly modeled by 

recurrent layer and/or self-attention mechanism. However, how 

to combine these two powerful approaches more effectively 

needs to be explored. In this paper, a recurrent attention with 

parallel branches is proposed to first fully exploit the contextual 

information contained in the time-frequency (T-F) features. 

Then, this information is further modeled by the recurrent 

modules in a conventional manner. Specifically, the proposed 

recurrent attention with parallel branches uses two attention 

modules stacked sequentially. Each attention module has two 

parallel branches of self-attention to model dependencies along 

two axes and one convolutional layer for feature fusion. Thus, 

the contextual information contained in the T-F features can be 

fully exploited and further modeled by the recurrent modules. 

Experimental results showed the effectiveness of our proposed 

method. 

Index Terms: speech enhancement, speech separation, 

contextual information 

1. Introduction 

Human beings have the impressive ability to focus on a 

particular speaker and to switch their attention freely among 

different talkers in complex acoustic scenarios. However, it is 

extremely difficult for the machine to imitate human behavior 

and tackle this kind of task, which is widely known as the 

cocktail party problem [1]. Attempting to crack this problem, 

speech separation plays an important role in separating the 

speech of each talker from the mixed signal [2]. Recently, with 

the help of deep learning, monaural speech separation has made 

a big progress. The separation performance is being improved 

continuously. 

Under the supervised framework, one of the major 

challenges faced by speech separation is the label permutation 

problem, which involves how to correctly determine the 

training label assignment. Fortunately, this problem was solved 

delicately by deep clustering [3-4] and permutation invariant 

training [5-6]. Since then, various algorithms have been 

proposed to improve separation performance. Without taking 

full advantage of the phase spectrum, early methods [7-8] 

mainly dealt with magnitude spectrum in the time-frequency 

(T-F) domain and their performance did not exceed that of ideal 

magnitude masks. This situation has not changed until the 

introduction of end-to-end (E2E) method without using short-

time Fourier transform (STFT). In [9], the waveform of mixed 

signal was directly transformed into a real-valued latent space 

through a convolutional layer so that the difficulty of phase 

estimation was circumvented. Although several stacks of 

dilated convolutional layers were used in [9], the receptive field 

of convolutional layers was limited and the contextual 

information could not be fully exploited.  

To better model the contextual information and to solve the 

long sequence problem due to small frame length in E2E 

methods, the recurrent modules combined with dual-path 

strategy were adopted in [10]. Thus, the contextual information 

mainly along time axis was exploited by sequentially modelling 

the dependencies lied in the intra-segment and inter-segment. 

The basic block used in [10] is named as dual-path recurrent 

neural network (DPRNN) block. Subsequently, the self-

attention mechanism was combined with recurrent modules in 

[11] to achieve better performance. Note that the attention 

module was concatenated with the recurrent module to jointly 

exploit the dependencies contained either in the intra-segment 

or in the inter-segment. Thus, the self-attention used in this kind 

of attention module is called axial attention. Besides, the basic 

block used in [11] is named as dual-path transformer network 

(DPTNet) block. Many recent studies followed in the footsteps 

of [10-11] and attempted to further improve separation 

performance through different approaches, such as: the multi-

scale feature fusion [12-13], the additional identity information 

[14-15], the super-resolution technique [16], the quasi-dual-

path method [17], etc. 

For a while, the performance of separation method in T-F 

domain was not as attractive as that of E2E methods. However, 

recent breakthrough has been achieved with separation method 

performed in T-F domain. In [18], the DPTNet block was 

applied to model the contextual information along frequency 

axis and time axis, instead of that contained in intra-segment 

and inter-segment for E2E methods. Besides, the authors 

designed a novel T-F path scanning that replaced several layers 

of DPTNet block to model the transitions of adjacent frequency 

bins among adjacent frames. However, the axial attention and 

its subsequent recurrent module still exploited the contextual 

information along the same specific axis, i.e., frequency axis, 

time axis or the newly designed T-F path. 

Generally speaking, the contextual information contained 

in the feature sequence is mainly modeled by recurrent layer 

and/or self-attention mechanism. For better performance, the 

attention module is usually concatenated with the recurrent 

module to jointly exploit the contextual information along the 

same specific axis. Whether such combination is the most 

effective is unknown and other ways to combine these two 

powerful approaches need to be explored. Several studies in 

speech enhancement have shown the effectiveness of providing 

more contextual information to subsequent modules. In [19], 

the spectro-temporal receptive field extractor was applied 

before the original sub-band model to further improve the 

network discrimination between speech signal and other 

interference. In [20], the time-frequency attention was achieved 
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through average pooling combined with convolutional layer 

and was incorporated before subsequent modules to guide the 

network to focus on more important T-F features. Inspired by 

these studies and the recurrent criss-cross attention in [21], we 

propose a recurrent attention with parallel branches (RAPB) in 

this paper. The proposed RAPB is used to first fully exploit the 

contextual information contained in the T-F features. Then, this 

information is further modeled by the recurrent modules in a 

conventional manner. Specifically, the proposed RAPB uses 

two attention modules stacked sequentially. Each attention 

module has two parallel branches of self-attention to model 

dependencies along two axes and one convolutional layer for 

feature fusion. Thus, the contextual information contained in 

the T-F features can be fully exploited and further modeled by 

the subsequent recurrent modules. Experimental results showed 

the effectiveness of our proposed method. 

The rest of this paper is organized as follows. The details of 

the proposed method are described in Section 2. The 

experimental setup is presented in Section 3. The experimental 

results are shown and discussed in Section 4. The conclusions 

are given in Section 5. 

2. Proposed Method 

2.1. Problem formulation 

The purpose of speech separation is to extract the speech signal 

of each speaker from the mixed signal, namely: 

( )
1

ˆ ,   1,..., .
S

j k

k

x y z n j S
=

 
= = + = 

 
M M  (1) 

where 𝑥𝑗 , j=1, …, S are the separated signals, M(·) represents the 

mapping function, y is the mixed signal captured by the 

microphone, S is the number of speakers in the mixed signal, zk 

is the source image of the kth speaker, n is the additive noise. 

Note that the separated signals are clean signals for both 

reverberant scenario and anechoic scenario in this paper. 

2.2. Recurrent attention with parallel branches 

In many speech separation methods, the attention module is 

usually concatenated with the recurrent module to jointly 

exploit the contextual information along the same specific axis. 

However, how to combine these two powerful approaches more 

effectively still needs to be explored. Inspired by [19-21], we 

propose a RAPB to first exploit the contextual information 

contained in the whole T-F features and this information is 

further modeled by the subsequent recurrent modules. The 

details of RAPB are depicted in Figure 1. 
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Figure 1: The details of our proposed RAPB. 

As shown in the left part of Figure 1, the input PRDTF is 

processed sequentially by two attention modules. Note that D is 

the channel dimension, T is the number of frames and F is the 

number of frequencies. These two modules have the same 

architecture and the first one is detailed in the right part of 

Figure 1. The number of heads is denoted as H and for head 

i[1, H] of the first attention module, the input P is mapped into 

three feature tensors, i.e., query Q1_i, key K1_i and value V1_i. 

These mapped feature tensors have the channel dimension 

B=D/H and are utilized to perform two self-attentions 

separately. In the upper branch, the self-attention is done along 

the frequency axis. These three tensors are first reshaped and 

the resulting tensor dimensions are given in the parentheses. 

The reshaped tensors Q1_i_freq and K1_i_freq are first multiplied 

and scaled to calculate similarity. Then the attention map 

A1_i_freq is obtained by performing a softmax function along the 

last dimension. Finally, the reshaped value V1_i_freq is multiplied 

by the attention map A1_i_freq and reshaped back to obtain feature 

tensor P1_i_freq. The same procedure is done in the lower branch 

along the time axis and the feature tensor P1_i_time is obtained. 

These feature tensors P1_i_freq and P1_i_time of each head are 

concatenated to form P1_concatR2DTF, which is further 

mapped through a convolutional layer to change the channel 

dimension back to D. The output P1RDTF of the first 

attention module is obtained by skip connection and layer 

normalization (LN). This procedure can be written as: 
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where Reshape(·) represents the reshape operation, Softmax(·) 

is the softmax function, Concat[·] represents the concatenation, 

LN(·) is the layer normalization and Conv2d(·)  represents the 

2-D convolution. With P1 as input, the second attention module 

is executed in the same way as the first module and P2RDTF 

denotes the final output of RAPB. Using two attention modules 

sequentially, RAPB can exploit the contextual information 

contained in the whole T-F features. 

2.3. Proposed network architecture 

In this paper, the proposed network is named as RAPBNet and 

can be divided into three parts as in [9], i.e., the encoder, the 

separator and the decoder, as shown in Figure 2(a). 

The mixed signal y serves as the input of the encoder. The 

STFT is first used to obtained the complex spectrum Y. Note 

that the STFT is realized through 1-D convolution to enable 

E2E training. Then, the dynamic range compression (DRC) [22] 

is performed on the magnitude. The real and imaginary parts of 

the compressed spectrum is concatenated to form a feature 

tensor YcR2TF: 

Concat cos , sinc

Y YY Y Y
 

  =
 

 (6) 

where α is the compression factor in the range (0, 1]. The 

magnitude and phase of Y are denoted as |Y| and θy, respectively. 

The stacked tensor Yc is fed into a 77 convolutional layer and 
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a rectified linear unit (ReLU) to obtain the non-negative high-

dimensional feature tensor ERUTF. 

In the separator, the feature tensor E is first layer 

normalized and its channel dimension is reduced through a 

convolutional layer. The obtained feature tensor PRDTF is 

processed by N RAPB blocks. Note that each RAPB block 

consists of one RAPB and two recurrent modules, as shown in 

Figure 2(b). The contextual information contained in the whole 

T-F features is exploited by the RAPB and is provided to the 

two recurrent modules. The recurrent modules model the 

dependencies along frequency axis and time axis through bi-

directional long short-term memory (BLSTM) [23]. The fully 

connected (FC) layer, skip connection and LN are used as well. 

The feature tensor RRDTF in Figure 2(a) is further fed into a 

convolutional layer and a ReLU to obtain the mask for each 

speaker. 
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Figure 2: (a)The proposed RAPBNet. (b)The details of 

RAPB block. 

The estimated masks are element-wise multiplied with the 

output of the encoder E to obtain the separated feature tensors 

𝐸̂𝑗 , j=1, …, SRUTF. In the decoder, a convolutional layer is first 

used to change the channel dimension from U to 2. 

Subsequently, the inverse DRC and inverse STFT are 

performed to obtain the separated speech signals 𝑥𝑗 , j=1, …, S.  

Note that the inverse STFT is realized through 1-D transposed 

convolution to enable E2E training. 

3. Experimental setup  

3.1. Datasets 

In this paper, four common datasets are used to evaluate our 

proposed method. The first dataset is WSJ0-2Mix [3], in which 

each mixed signal is generated by randomly selecting 

utterances from different speakers in Wall Street Journal dataset 

(WSJ0). These selected utterances are further mixed at a 

random signal-to-noise ratio (SNR) between -5dB and 5dB. The 

second dataset is an open-source dataset Libri2Mix [24]. In this 

dataset, the train-360, dev and test set are used as the training, 

validation and test set, respectively. The third dataset is WSJ0 

Hipster Ambient Mixtures (WHAM!) [25], which is an 

extension of WSJ0-2Mix towards more complex acoustic 

scenarios. In this dataset, the clean mixtures from WSJ0-2Mix 

are further mixed with real ambient noise, which is collected in 

coffee shops, restaurants and bars. The last dataset is WHAMR! 

[26], which attempts to simulate real-world scenarios and 

further includes reverberation. For each dataset, the speech 

signals are down-sampled to 8 kHz for reducing computational 

complexity and memory consumption.  

3.2. Model configurations 

In our proposed method, the Hanning widow is used to split 

speech signal into frames. The window length and the hop size 

are 32ms and 16ms, respectively. To perform speech separation 

in T-F domain, a 256-point STFT is used. Thus, 129 frequency 

bins are obtained. The compression factor α used in DRC is set 

to 0.5. For the convolutional layer in the encoder, the kernel size 

is set to (7, 7) for extracting local information. Except for this 

convolutional layer, the kernel sizes for other convolutional 

layers are all set to (1, 1). As for hyperparameters U and D, they 

are set to 256 and 64, respectively. In the RAPB block, the 

number of attention head H is 4 and the number of hidden units 

in each BLSTM is 128. Besides, the number N of RAPB blocks 

is set to 6 in this paper. 

3.3. Training details 

All models are trained on 4s long speech signals for 120 epochs. 

The optimization algorithm used is Adam [27] optimizer and 

the initial learning rate is set to 0.0005. In the first 100 epochs, 

the learning rate is multiplied by a factor of 0.98 for every two 

epochs. Then, the multiplied factor is reduced to 0.9. The 

gradient clipping is applied with a maximum L2-norm of 1 when 

training the models on WHAMR! dataset and 5 on other 

datasets. Using utterance-level permutation invariant training 

(uPIT) [6], our training objective is to maximize the scale-

invariant signal-to-distortion ratio (SI-SDR) [28]. 

4. Results and discussions 

To verify the effectiveness of proposed method, the separation 

performance is evaluated through several well-known metrics, 

including SI-SDR improvement (SI-SDRi) and SDR 

improvement (SDRi) [29]. In addition, the computational 

complexities1 of various methods are presented as well. 

4.1. Comparison with baseline methods 

To demonstrate the effectiveness of better exploiting contextual 

information, the proposed RAPBNet is compared with two 

baseline methods in this subsection. These three methods share 

the same framework and use different basic blocks in the 

separator. The proposed method takes RAPB block as the basic 

block where the contextual information contained in the whole 

T-F features is provided for the recurrent modules. For 

comparison, the basic block of Baseline 1 only consists of 

recurrent modules and there is no attention mechanism used. 

The basic block of Baseline 2 uses axial attention before the 

subsequent recurrent module, which means that the contextual 

information is exploited sequentially. For clarity, the basic 

blocks of these baseline methods are shown in Figure 3.  
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Figure 3: The basic block of (a) Baseline 1 and (b) Baseline 2. 

1https://github.com/sovrasov/flops-counter.pytorch 
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Table 1: Comparison with baseline methods on WSJ0-2Mix. 

Methods SI-SDRi 

(dB) 

SDRi 

(dB) 

Parameter  

size (×106) 

MACs 

(×109) 

Baseline 1 20.0 20.1 2.66 22.2 

Baseline 2 20.7 20.9 2.86 25.1 

RAPBNet 21.3 21.4 2.91 24.2 

The experiment was conducted on WSJ0-2Mix and the 

results are given in Table 1. Only using recurrent modules as 

the basic block, Baseline 1 can already achieve 20.0dB and 

20.1dB on SI-SDRi and SDRi, respectively. Comparing these 

two baseline methods, Baseline 2 can achieve additional 0.7dB 

and 0.8dB improvements over SI-SDR and SDR by providing 

contextual information sequentially using axial attention. With 

RAPB, the proposed method can achieve 21.3dB and 21.4dB 

on SI-SDRi and SDRi, respectively. Compared with our 

proposed RAPBNet, Baseline 2 adopts axial attention and 

exploits the contextual information sequentially, leading to 

suboptimal performance. That is to say, the improvement over 

Baseline 2 indicates the effectiveness of better exploiting 

contextual information provided by the whole T-F features. The 

last two columns show the parameter size and the multiply-

accumulate operations (MACs). Although the proposed 

RAPBNet uses two attention modules in one basic block, the 

increase in parameter size and MACs is small. 

4.2. Results on WSJ0-2Mix and Libri2Mix 

Several methods and their types are listed in Table 2 and 

compared with our proposed RAPBNet. The E2E methods 

listed here mainly exploit the contextual information along time 

axis. These E2E methods (except for DPRNN [10], Gated 

DPRNN [14] and Wavesplit [15]) use axial attention in their 

basic blocks and exploit the contextual information sequentially. 

On WSJ0-2Mix, several methods (from DPRNN [10] to 

Wavesplit [15]) perform worse than TFPSNet [18] and 

RAPBNet, which are separation methods performed in T-F 

domain. MTDS(DPTNet) [13] uses an additional time-delay 

sampling network to further model dependencies at different 

scales and RAPBNet performs slightly worse with fewer 

parameters. SFSRNet [16] utilizes the super resolution 

technique and QPDN [17] uses temporal convolutional layers 

to achieve better performance. However, the parameter size of 

these two methods is more than ten times of the proposed 

method. TFPSNet [18] uses three kinds of path scanning with 

axial attention to exploit the contextual information 

sequentially. Our proposed RAPBNet achieves higher 

performance by first exploiting the contextual information with 

RAPB, which is further processed with recurrent modules. 

Similarly, RAPBNet achieves competitive performance on 

Libri2Mix. 

4.3. Results on WHAM! and WHAMR! 

To further verify the applicability of the proposed method in 

complex acoustic scenarios, the experimental results are given 

in Table 3 on WHAM! and WHAMR!. The four comparison 

methods are all E2E methods and mainly model the contextual 

information along time axis. Also note that the Gated DPRNN 

[14] and Wavesplit [15] use additional identity information. 

Compared with these methods, RAPBNet achieves much better 

results on both datasets and shows more robustness for noisy 

and/or reverberant scenarios. This can be attributed to better 

modeling of the contextual information contained in the whole 

T-F features. These results prove the effectiveness and 

robustness of the proposed method. 

Table 3: Experimental results on WHAM! and WHAMR!. 

Results with superscript “†” were reported in [14]. 

Methods WHAM! WHAMR! 
SI-SDRi 

(dB) 

SDRi 

(dB) 

SI-SDRi 

(dB) 

SDRi 

(dB) 

Conv-TasNet [9] 12.7† — 8.3† — 

DPRNN [10] 13.9† — 10.3† — 

Gated DPRNN [14] 15.2 — 12.2 — 

Wavesplit [15] 15.4 15.8 12.0 11.1 

RAPBNet 16.3 16.5 15.6 14.0 

5. Conclusions 

In this paper, a monaural speech separation method was 

proposed based on recurrent attention with parallel branches. 

The proposed RAPB is used to first fully exploit the contextual 

information contained in the T-F features. Then, this 

information is further modeled by the recurrent modules in a 

conventional manner. Specifically, the proposed RAPB uses 

two attention modules stacked sequentially. Each attention 

module has two parallel branches of self-attention to model 

dependencies along two axes and one convolutional layer for 

feature fusion. Thus, the contextual information contained in 

the T-F features can be fully exploited and further modeled by 

the subsequent recurrent modules. Compared with several E2E 

methods and TFPSNet [18], our proposed RAPBNet achieved 

competitive performance on WSJ0-2Mix and Libri2Mix with a 

small number of parameters. For more complex acoustic 

scenarios, the proposed RAPBNet achieved higher performance, 

proving the effectiveness of better exploiting the contextual 

information contained in the whole T-F features with RAPB.  
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Table 2: Experimental results on WSJ0-2Mix and Libri2Mix. Results with superscript “†” were reported in [18]. 

Methods Type 
Parameter size 

(×106) 

WSJ0-2Mix Libri2Mix 

SI-SDRi (dB) SDRi (dB) SI-SDRi (dB) SDRi (dB) 

DPRNN [10] E2E 2.6 18.8 19.0 16.5† 16.8† 

Gated DPRNN [14] E2E 7.5 20.1 — — — 

DPTNet [11] E2E 2.7 20.2 20.6 18.2† 18.4† 

Sandglasset [12] E2E 2.3 20.8 21.0 — — 

Wavesplit [15] E2E 29 21.0 21.2 19.5 20.0 

MTDS(DPTNet) [13] E2E 4.0 21.5 21.7 — — 

SFSRNet [16] E2E 59 22.0 22.1 21.1 21.4 

QPDN [17] E2E 200 22.1 — — — 

TFPSNet [18] T-F 2.7 21.1 21.3 19.7 19.9 

RAPBNet T-F 2.9 21.3 21.4 20.1 20.4 
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