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Abstract
The integration of well-pre-trained acoustic and linguistic rep-
resentations boosts the performance of speech-to-text cross-
modality tasks. However, the potential of fine-tuning cross-
modality integrated model on accented and noisy corpus is
still under-explored. To address this gap, we propose an end-
to-end acoustic and linguistic integrated representation learn-
ing model, namely Dual-w2v-BART. Our model incorporates
acoustic representations from wav2vec2.0 and linguistic infor-
mation from BART model by utilizing the cross-attention mech-
anism in the decoder, with paired speech-text dual inputs. To
enhance model robustness on accent and noise, we propose a
text-centric representation consistency component that helps to
gain the similarity between different modality inputs while rep-
resenting the same content. The results on accented and noisy
speech recognition tasks demonstrate the effectiveness of the
proposed model for reducing error rates compared to baseline
and other competitive models.
Index Terms: Speech Recognition, Dual Acoustic Linguistic,
Self-supervised Learning, Accented and Noisy

1. Introduction
The paradigm of self-supervised pre-training and fine-tuning
has proven to be effective in transferring high-quality univer-
sal and contextual representations from high-resource unpaired
data to various downstream tasks, resulting in significant per-
formance gains. This approach has garnered considerable atten-
tion and has been extensively researched in the areas of speech,
text, and computer vision. Methods like BERT [1], BART [2],
wav2vec2.0 [3], and HuBERT [4] have emerged as the back-
bone of many speech and natural language processing tasks.

In self-supervised learning, the model is trained on un-
labeled speech data using a pretext task, such as predicting
masked, distorted speech signals, predicting the context of a
given speech segment and so on. This pre-training stage helps
the model to learn useful and discriminative representations of
speech, which can then be fine-tuned on a downstream task,
such as speech recognition or speaker identification, using a
smaller amount of labeled data. By leveraging self-supervised
learning, speech recognition models can achieve state-of-the-art
performance with less dependence on human-annotated data,
making them more scalable and cost-effective. Fine-tuning
from self-supervised pre-trained acoustic models directly, i.e.,
wav2vec2.0 [3], HuBERT [4], WavLM [5] has been well exhib-
ited in downstream ASR tasks.

However, it suffers some performance drops on down-
stream ASR tasks in cross-domain scenarios. For example, the
self-supervised pre-training data may be recorded in a studio
environment with high-quality microphones, while the down-

stream task data may be recorded in a noisy environment with
low-quality microphones. This domain mismatch can result in
the model not generalizing well to the downstream task data.
Consequently, additional fine-tuning or adaptation procedures
are necessary to improve self-supervised models’ performance
in cross-domain ASR scenarios.

Recent end-to-end approaches leverage the complementary
strengths of speech and text modalities to improve performance
in various speech-related tasks, which can better handle vari-
ations in acoustic conditions, reduce transcription errors, and
capture higher-level semantic features. Unlike previous work
[6, 7, 8, 9, 10] that focused on pre-training using large-scale
speech and text data, our work emphasize more on fine-tuning
ASR tasks on small or moderate amounts of speech-text data.

The most recent approaches have been devoted to fusing
pre-trained acoustic and linguistic models into a single end-to-
end model for downstream ASR tasks, thereby fully exploit-
ing the acoustic and linguistic information in the low-resource
corpus. Additionally, existing end-to-end approaches can be
categorized into the two: a) Stacked Acoustic-and-BERT-style
Models. These methods [11, 12, 13, 14] cascade the pre-
trained acoustic encoder and BERT-style linguistic encoder. b)
Acoustic-and-Autoregressive Models. These methods [15, 16]
are straightforward to design encoder-decoder architecture that
incorporates pre-trained acoustic encoder and autoregressive
linguistic decoder, i.e., DistilGPT2 [17], mBART [18].

Inspired by mentioned studies and other joint speech-text
training work [19, 20, 21], we aim to design an end-to-end
encoder-decoder based architecture utilizing self-supervised
wav2vec2.0 and BART models with paired speech-text dual
inputs in this paper. The proposed model follows the design
principle of effectively combining acoustic and linguistic mod-
els while modifying each model at the minimum cost to avoid
the catastrophic forgetting problem. To produce robust acoustic
and textual representations, the proposed model encodes speech
and noisy texts via pre-trained wav2vec2.0 and BART, respec-
tively. We introduce a dual-attention decoder in replacement of
the vanilla decoder to capture the useful speech-text and text-
text dependencies, then generate final predicted outputs. In ad-
dition, a sampling training strategy is adopted to bridge the gap
between differences between acoustic and linguistic pre-trained
models in the early stage of fine-tuning. We evaluate Dual-w2v-
BART in accented and noisy speech conditions and demonstrate
its effectiveness. To sum up, we propose a Dual-w2v-BART
model and the contributions can be summarized as follows:
• A dual-attention decoder is proposed to effectively utilize the

knowledge embedded in the decoder of the pre-trained lan-
guage/seq2seq model.

• A text-centric representation consistency component is pro-
posed to mitigate the domain mismatch between speech and
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Figure 1: The model architecture of Dual-w2v-BART consists of wav2vec2.0 as acoustic encoder, BART encoder as text encoder,
and a decoder with two parallel cross-attention modules. The representation consistency unit is used to increase the similarity of
representations from different modalities via pivots from the ground truth. The sampling training strategy is utilized to alleviate the
inaccurate intermediate CTC predictions due to domain shift.

text representations learned from the encoder.
• We conduct extensive experiments on cross-domain ASR

datasets to demonstrate the effectiveness of our proposed ap-
proach, which outperforms many strong baselines.

2. Dual Acoustic and Linguistic Model
2.1. Model Description

The architecture of Dual-w2v-BART is illustrated in Figure 1,
where the acoustic encoder is a pre-trained speech model
wav2vec2.0 [3], and the linguistic part is an encoder-decoder
based language model BART [22]. The acoustic encoder takes
raw waveform Xa as input and outputs acoustic representation
Ha. The output of the last encoder layer is first mapped to a pos-
terior probability distribution over vocabularies using a linear
projection layer and softmax function with connectionist tem-
poral classification (CTC) loss criterion LCTC . At the same
time, intermediate CTC predictions without language depen-
dencies are calculated which can be refined to further improve
accuracy.

Ha = Accoustic(Xa) (1)

XCTC
t = CTC(Ha) (2)

The input Xt of the linguistic model is noisy text, either from
CTC predictions or from corrupted ground truth during train-
ing. In the case of corrupted ground truth, various text corrup-
tion schemes involving token deletion, text infilling, and token
replacement inspired by BART pre-training are employed. The
purpose of applying these operations is to simulate ASR predic-
tions and stabilize the training process of the linguistic model.
The noisy sequence Xt passes through the corresponding text
encoder to produce contextualized linguistic representation Ht.
The text decoder consumes both acoustic and linguistic fea-
tures for sequence generation, which enables better modeling
of the correlations between the two modalities. Specifically,
we insert a speech cross-attention module to the transformer
decoder layer consisting of masked multi-head attention, text
cross-attention and feed-forward network. The speech cross-
attention module and text cross-attention module focus on pro-
nunciation and semantics aspects respectively and both are de-
ployed in parallel. After that, acoustic and linguistic informa-

tion are fused and aligned into a unified semantic space via a
fully connected network.

Et = LinguisticEmbedding(Xt) (3)

Ht = LinguisticEncoder(Et) (4)

Besides, a novel text-centric representation consistency regular-
ization unit is proposed to reduce the distance between encoder
outputs from different input modalities. The overall training
objective is the combination of CTC loss, attention loss, and
text-centric representation consistency loss, formulated as:

L = λ1LCTC + λ2LATT + λ3LRCR (5)

where the hyper-parameters λ1, λ2 and λ3 are set to be 0.3, 0.7,
and 0.2, respectively. The ASR task loss consists of both CTC
loss and attention loss. Similar with [23], we ensure the ASR
loss weight sum to 1 and adjust the auxiliary task loss weight to
hold the relative importance of the auxiliary task.

2.2. Representation Consistency Regularization

Representation Consistency Regularization (RCR) aims to align
the acoustic and linguistic contextual latent spaces by increasing
the representation similarity between the output of the acoustic
encoder and linguistic encoder when paired with speech and
text inputs. This alignment is important for effectively leverag-
ing multimodal inputs. Specifically, RCR facilitates the align-
ment between representations from different modalities and
pivot embeddings from ground truth by implicitly pushing in-
put representations from different modalities closer together.

The representation consistency regularization is a cross-
attention based structure. Specifically, to obtain the pivot
embedding Hgt, we feed the ground truth text Tgt =
(t1, t2, ..., tn) into BART encoder. For the acoustic represen-
tation Ha, we feed the speech into the wav2vec2.0 model, and
for the linguistic representation Ht, we feed the noisy text into
the BART encoder. To prevent label leakage during training, we
freeze the network for pivot embedding extraction and share its
parameters with the one for noisy text. We then use Hgt as a
query, and Ha as the key and value for acoustic representation.
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Similarly, we use Hgt as a query, and Ht as key and value for
linguistic representation. This can be formulated as:

Yinter = FFN(Attention(Hgt,Ha,Ha)) (6)

Ycorr = FFN(Attention(Hgt,Ht,Ht)) (7)
Finally, the cross-entropy criterion is used to align Yinter

and Ycorr to the ground truth transcript respectively. The rep-
resentation consistency loss is defined as the weighted sum of
interaction loss and correction loss:

LRCR = −α

n

n∑

i=1

logpinter
i (ti|sg[Hgt],Ha)

− (1− α)

n

n∑

i=1

logpcorri (ti|sg[Hgt],Ht)

(8)

where sg[·] is the stop-gradient operator and pinter
i , pcorri rep-

resents the predicted probability of the output being ti at time
step i. The hyper-parameter α is set to 0.5.

2.3. Sampling Training Strategy

The intermediate CTC predictions produced by the acoustic
model are inaccurate due to the domain shift problem between
pre-training and fine-tuning. To alleviate this problem, this pa-
per adopts a very simple yet effective strategy. Either the noisy
ground truth transcript or the predicted CTC result is fed into
the linguistic model with a certain probability. The probability
p% linearly decreases to 0 as the training step ratio increases to
q%. In all experiments, we set p, q to 100 and 10, respectively.

Furthermore, since the vocabulary of BART is very large,
only a very small subset of vocabulary is used in ASR tasks.
We find that eliminating redundant tokens from the vocabulary
when fine-tuning is necessary for stable training, and the trick
is used throughout all our experiments.

3. Experiments
3.1. Dataset

The proposed model is evaluated on two challenge tasks: Ac-
cented ASR task and Noisy ASR task. For the accented ASR
task, we evaluate using the AESRC2020 [24] corpus, which
consists of 164 hours of accented English speech recordings
from non-native speakers. Since no labeled test set is publicly
released, we create a test set by splitting approximately 10% of
the training speech. The speakers and accents for both training
and test sets are overlapped. As for the noisy ASR task, we con-
struct a noisy speech corpus by randomly sampling noise clips
from the MUSAN 1 noise dataset and adding them to a clean
subset of 360 hours sourced from the LIBRISPEECH2 dataset.
The Signal-to-Noise Ratio (SNR) levels are sampled from a
uniform distribution in 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB.
Upon adding noise to the dev-clean and test-clean sets of LIB-
RISPEECH in the same manner, we use them as the validation
and test sets for the noisy dataset. All transcriptions are nor-
malized by removing special punctuations and casing for both
tasks.

3.2. Experimental Setup

The Dual-w2v-BART model is trained on a single A100 40GB
GPU using the Adam optimizer with a tri-state learning sched-
uler where the learning rate is warmed up for the first 10% steps,

1https://www.openslr.org/17
2https://www.openslr.org/12

Table 1: The WER (%) results of Dual-w2v-BART on accented
and noisy English speech datasets in comparison with other
competitive models. The proposed Dual-w2v-BART outper-
forms other compared models under accented and noisy sce-
narios.

Model Accented Noisy
Dev Test Dev Test

wav2vec2.0-base - 8.31 10.37 9.29
wav2vec2.0-large - 7.55 8.77 7.82
w2v-BART [16] 7.24 7.94 8.63 7.76
w2v-cif-bert [12] - 9.18 9.58 8.75

Fairseq S2T (Scratch) 9.14 9.93 10.14 9.23
Supervised Pre-train & FT 7.54 8.36 9.01 8.33

Dual-w2v-BART 6.53 7.17 7.93 7.12

hold as a constant for the following 40% steps, and is decayed
linearly for the rest steps. We use an average batch size of 1.6m
samples. For accented and noisy speech datasets, we train 80k
updates in total. We average the models’ parameters at the last
5 epochs to avoid overfitting. In decoding, we use beam-search
with a beam size of 10.

3.3. Experimental Results

We compare our proposed model with baseline and other main-
stream models, including two types of models: the first be-
ing self-supervised acoustic and linguistic integrated models
and the second being supervised models. For self-supervised
setting, the w2v-BART [16] model is an end-to-end encoder-
decoder model that stacks the pre-trained wav2vec2.0-base
as an acoustic encoder and BART decoder as the linguis-
tic decoder. The w2v-cif-bert [12] model fuses pre-trained
wav2vec2.0 and BERT into a single end-to-end ASR model. In
a supervised setting, one model is trained from scratch, while
the other is fine-tuned based on supervised pre-training with
LIBRISPEECH.

The detailed results are shown in Table 1. We measure the
performance of ASR by the word error rate (WER). In the com-
parison, the fixed pre-trained wav2vec2.0 base model is used
as a baseline. On the accented and noisy test sets, Dual-w2v-
BART outperformed wav2vec2.0 and achieved the WER of
7.17% and 7.12%, respectively. This indicates that the linguis-
tic decoder improves the performance of the acoustic encoder.
We re-implemented w2v-BART [16] and used w2v-cif-bert [12]
source codes to reproduce results on the AESRC2020 dataset.
We use Fairseq3 S2T recipe to train from scratch and the tra-
ditional supervised pre-train & finetuning pipeline as baselines.
Based on WER results from Table 1, the proposed Dual-w2v-
BART model achieves significant improvements in comparison
with other joint acoustic and linguistic models and baselines in
accented and noisy speech settings.

3.4. Alleviation of Length Inconsistency

In contrast to encoder-based BERT-type acoustic models, the
encoder-decoder based pre-trained acoustic model has been
shown to effectively alleviate the length inconsistency problem
in ASR. Our experiments demonstrate that the use of a linguis-
tic model can improve the overall ASR performance by reduc-
ing the WER. Additionally, we report the correction length ra-

3https://github.com/facebookresearch/fairseq
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tio, which measures the ratio of deletion and insertion errors in
the ASR-recognized transcription text compared to the ground
truth. This ratio serves as an important metric for evaluating the
ability of linguistic models to mitigate the length inconsistency
problem in ASR.
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Figure 2: Performance comparison with different models in
terms of correction length ratio. The smaller the correction
length ratio, the better ASR performance. Dual-w2v-BART out-
performs the compared mainstream models with the lowest cor-
rection length ratio.

The results of our experiments on accented and noisy En-
glish datasets are presented in Figure 2. It is observed that mod-
els employing a decoder structure exhibit better performance,
suggesting that a well-trained decoder can effectively correct
over-recognized and under-recognized text, leading to a reduc-
tion in WER. However, it is important to note that the use of a
decoder may increase the decoding time during the recognition
phase, which may be a potential drawback.

3.5. Impact of Sampling Training Strategy

To demonstrate the impact of the sampling training strategy on
the learning process, we conduct experiments to compare the
performance of models trained with and without this strategy.
Table 2: The WER(%) results of with/without sampling training
strategy on the accented and noisy test sets.

Sampling Training Accented Noisy

Yes 7.17 7.12
No 7.21 7.14

Our experiments on accented and noisy speech datasets are
summarized in Table 2. We observed that the use of the sam-
pling training strategy resulted in a slight improvement in the
ASR performance in terms of lower WER. This finding is both
intuitive and experimentally valid, as the strategy helps to sta-
bilize the training process. Moreover, the results also show that
the strategy effectively compensated for the inconsistency be-
tween the acoustic and linguistic models at different stages dur-
ing fine-tuning.

3.6. Ablation Study

Ablation studies are conducted to verify the effectiveness by re-
moving each main component from the proposed model. WER
results on AESRC2020 dataset are shown in Table 3.

The ablation study reveals that all components of the Dual-
w2v-BART model are essential for achieving optimal perfor-
mance, as removing any component results in degraded perfor-
mance. However, the contributions of each component can be

Table 3: Ablation study of Dual-w2v-BART with/without dif-
ferent model components on AESRC2020 test set in terms of
WER(%).

Number Model Test

1 Dual-w2v-BART 7.17
2 w/o speech cross-attention 8.24
3 w/o BART encoder
4 w/ Pre-trained decoder 7.85
5 w/ Random Init. decoder 7.98
6 w/o BART (only wav2vec2.0) 8.31
7 w/o Representation consistency 7.40
8 w/ Interaction 7.22
9 w/ Correction 7.32

distinguished. When the speech cross-attention module is re-
moved from the Dual-w2v-BART model (Row 2), the integrated
model degenerates into a cascaded model with ASR followed by
error correction, and the performance drops significantly. This
emphasizes the importance of joint speech-text dependency for
decoding. We also examined the impact of adding a decoder to
the wav2vec2.0 model. Fine-tuning with a randomly initialized
decoder (Row 5) resulted in improved performance compared
to the wav2vec2.0 model, but worse than the Dual-w2v-BART
model. However, pre-training the decoder (Row 4) resulted in
further performance improvements, even when the pre-trained
parameters were from an independent model. This highlights
the importance of a pre-trained decoder for improving cross-
domain ASR performance.

Furthermore, the experimental results demonstrate that the
recognition performance is the worst when using only a pre-
trained acoustic model (Row 6), highlighting the crucial role of
the linguistic model in the cross-domain ASR task. Moreover,
when any part of the representation consistency regularization
is excluded (Rows 8 and 9), the performance decreases, under-
scoring the importance of the representation loss in improving
speech and text representations, and thus benefiting downstream
cross-domain ASR tasks.

4. Conclusion

In this work, we proposed a self-supervised dual acoustic and
linguistic representation learning framework for cross-domain
speech recognition, leveraging the effective modeling capabil-
ities of self-supervised models. To address the challenges of
heterogeneous modality inputs and single textual outputs, we
developed a speech-aware cross-attention module and a text-
aware cross-attention module to improve model dependency
and facilitate the cooperation of wav2vec2.0 and BART. Ad-
ditionally, we introduced a representation consistency regu-
larization to reduce domain mismatches between speech and
text representations. Experimental results demonstrate that
our proposed Dual-w2v-BART model significantly improves
cross-domain ASR performance on accented and noisy English
speech datasets.
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