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Abstract
Pre-trained speech encoders have been central to pushing state-
of-the-art results across various speech understanding and gen-
eration tasks. Nonetheless, the capabilities of these encoders in
low-resource settings are yet to be thoroughly explored. To ad-
dress this, we conduct a comprehensive set of experiments using
a representative set of 3 state-of-the-art encoders (Wav2vec2,
WavLM, Whisper) in the low-resource setting across 7 speech
understanding and generation tasks. We provide various quan-
titative and qualitative analyses on task performance, conver-
gence speed, and representational properties of the encoders.
We observe a connection between the pre-training protocols of
these encoders and the way in which they capture information in
their internal layers. In particular, we observe the Whisper en-
coder exhibits the greatest low-resource capabilities on content-
driven tasks in terms of performance and convergence speed.1

Index Terms: speech encoders, low-resource setting, speech
understanding

1. Introduction
In recent years, the advancement in various speech tasks has
largely been driven by encoder models that are typically pre-
trained on large-scale datasets via self-supervised learning [1,
2]. As the prominent examples, the Wav2vec2 [3] model lever-
ages a speech quantiser module to simulate token prediction of
BERT [4], while HuBERT [5] adopts a clustering method to
produce discrete labels for each feature vector to imitate masked
language model loss. Similar to HuBERT, WavLM [6] proposes
a denoising masked speech modelling, which masks segments
of speech signals to predict the pseudo-label at the output.

While it is expected that these pre-trained encoders produce
universal speech features effective for a broad range of down-
stream tasks, in practice pre-trained models still require large
amounts of fine-tuning labelled data to produce state-of-the-art
performance, or to converge. This could be attributed to their
inefficiency in utilising the representation space [7], as well as
the difference between the objectives for pre-training and fine-
tuning steps [8]. For instance, the pre-training objective is typ-
ically designed in the absence of any textual or content cue
(i.e., to predict masked speech segments), while the downstream
tasks (i.e., automatic speech recognition and speech translation)
often require a mapping between speech and text. An excep-
tion in this space is the Whisper encoder-decoder model [8],
which leverages weak supervision through large scale crawled
data of (audio, transcript) pairs from the internet, and is pre-
trained by learning the mapping between speech and decoder
outputs (i.e., in transcription or and translation).

1https://github.com/YangHao97/investigateAudioEncoders

To better understand the interplay between pre-training pro-
tocols of speech encoders, the amount of fine-tuning data, and
speech task types, we conduct a comprehensive study in this
work. We evaluate a set of three very recent speech mod-
els (Wav2vec2, WavLM, and Whisper) and assess their perfor-
mance on 7 downstream tasks (covering content, speaker and
semantic types) in the low-resource setting. Through extensive
experiments in the low-resource setting, we found that Whis-
per significantly outperforms Wav2vec2 and WavLM by a large
margin on content-related (content, semantics) tasks, and shows
performance degradation when speaker information is required
for a downstream task. To investigate how this behaviour is con-
nected with Whisper’s pre-training and representational prop-
erties, we examine layer-wise information of Whisper and the
other baselines. Additionally, through qualitative and quanti-
tative analyses, we highlight how Whisper’s superior perfor-
mance could be attributed to the properties of its representa-
tional space. We hope our study to provide insights for a more
effective use of pre-trained speech encoders in the resource-
constrained setting.

2. Related work
We provide a brief overview of some of the well-known pre-
trained speech models. The Wav2vec [9] model proposed two
multi-layer convolutional neural networks stacked on top of
each other to map raw audio to a representation instead of tra-
ditional acoustic feature extraction. Subsequently, Wav2vec
2.0 [3] attached Transformer layer [10] to the feature extractor
layer and utilised InfoNCE loss [11] and quantiser modules to
predict masked spans of the representation at the output. Sim-
ilar to BERT [4] in the text domain, HuBERT [5] adopts the
clustering method to produce discrete labels for each input fea-
ture, with the purpose of imitating masked language model loss.
WavLM [6] is proposed with denoising masked speech mod-
eling, which randomly transforms the input audio and masks
50% of speech signals to predict the labels corresponding to the
masked positions. Additionally, it follows the idea proposed by
HuBERT [5], converting continuous signals into discrete labels
through a clustering method, and models the discrete labels as
targets. WavLM achieves state-of-art results on several down-
stream tasks from the SUPERB benchmark [12]. As an excep-
tion to the above models, Whisper [8] is pre-trained under weak
supervision through crawled audio-transcript pairs from the in-
ternet. Transcription and translation are set as pre-training tar-
gets, pre-training the model via learning to map the input audio
to its transcript as the output.

Hsu et al. [13] highlighted the benefits of pre-training on
several domains. The pre-trained audio representations have
been investigated from different aspects [14, 15, 16, 17, 18,
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Table 1: Main results and the number of updates� required for fine-tuning in low-resource scenarios. The encoders’ details are as
follows: W2V2: 317M/24 layers, WavLM: 317M/24 layers, Whisper BASE: 21M/6 layers, Whisper SMALL: 88M/12 layers, Whisper
MEDIUM: 307M/24 layers. The bold font and underlined numbers denote the fastest convergence speed and performance, respectively.

SD SF IC KS ASR SID ST

Tr. Model DER ↓ � F1 ↑ � Acc ↑ � Acc ↑ � WER ↓ � Acc ↑ � BLEU ↑ �

1
%

W2V2 10.23 6.7k 57.88 42k 12.54 6.8k 85.17 9.2k 99.99 50k 9.74 4.5k 0.17 3k
WavLM 6.38 0.4k 75.56 98k 26.02 3.25k 93.57 10k 17.84 8.4k 12.69 11k 0.69 14k
Whisper-BASE 7.24 0.2k 70.47 84k 67.04 2.75k 96.79 1k 26.43 16k 2.66 2k 0.87 30k
Whisper-SMALL 5.37 1.2k 74.45 38k 57.63 4.25k 96.62 0.5k 20.27 10k 3.35 3.5k 0.94 28k
Whisper-MEDIUM 5.23 0.4k 77.76 48k 73.74 3k 96.72 0.75k 17.56 5k 3.97 4.5k 0.98 24k

5
%

W2V2 9.20 4k 78.29 58k 53.07 16k 94.25 20k 14.70 100k 41.90 47k 0.20 4k
WavLM 5.16 1.8k 86.50 92k 91.30 5k 95.91 1k 7.90 50k 55.52 27k 4.19 12k
Whisper-BASE 6.84 1.6k 82.80 94k 95.39 3k 97.44 1k 16.18 100k 11.63 15k 3.41 20k
Whisper-SMALL 4.89 1k 85.83 70k 95.78 2.5k 97.73 1k 11.76 90k 13.47 16k 3.84 26k
Whisper-MEDIUM 4.59 2.4k 87.60 62k 98.23 2.5k 97.95 1k 9.75 84k 17.94 13k 4.22 30k

1
0
%

W2V2 8.21 6k 80.74 90k 77.91 45k 95.85 15.5k 5.96 90k 56.09 78k 7.21 25k
WavLM 4.76 1k 88.84 80k 94.38 2.5k 96.82 0.5k 5.99 98k 79.51 61k 6.99 22k
Whisper-BASE 5.89 0.2k 85.15 86k 96.92 3k 97.24 3k 13.41 100k 19.48 13k 5.19 28k
Whisper-textscSmall 4.69 0.6k 87.90 98k 96.44 2.5k 97.63 2k 9.47 86k 23.04 13k 6.09 23k
Whisper-MEDIUM 4.38 0.4k 89.80 96k 98.78 7.5k 97.96 1k 7.74 74k 30.05 13k 6.48 29k

19], indicating they can generalise to wide range of corpora.
However, Yang et al. [7] demonstrated that the Wav2vec2
speech encoder under-utilises the representation space, and pro-
posed a self-supervision approach to improve the representa-
tion isotropy, leading to faster convergence during downstream
task training. Yi et al. [20] applied Wav2vec2 in low-resource
conditions for multilingual speech recognition and verified the
potential for transfer-ability of monolingual Wav2vec2 to other
languages. The Whisper encoder-decoder model has exhibited
its capabilities in zero-shot settings [8] by achieving state-of-
art performance on various tasks, from multilingual ASR, and
translation, to Language Identification, and Long-form Tran-
scription.

3. Experiments
In this section, we first describe our experimental settings
(§3.1). Next, we report the results on 7 downstream tasks in
low-resource scenarios (§3.2). Lastly, we provide an analysis
of Whisper encoders on the quantitative and qualitative prop-
erties compared to two other widely used encoders, Wav2vec2
and WavLM (§3.3).

3.1. Experimental Settings

Tasks and Dataset. We conducted experiments on various
tasks from SUPERB and SUPERB-SG benchmarks:2 Auto-
matic Speech Recognition (ASR), Speaker Diarisation (SD),
Intent Classification (IC), Slot Filling (SF), Keyword Spot-
ting (KS), Speaker Identification (SID), and Speech Translation
(ST). For evaluation, we use word error rate (WER), diarisa-
tion error rate (DER), accuracy (ACC), slot-type F1 score, ac-
curacy (ACC), accuracy (ACC), and BLEU score, respectively.
To simulate training in the low-resource setting, for a given task
we randomly sample 1%, 5% and 10% from the corresponding
training set. The statistics of these data splits are reported in
Table 2.
Models. We use three versions of Whisper encoders3, including

2https://superbbenchmark.org
3For brevity, we drop encoder when Whisper is mentioned.

Table 2: Training tasks’ types and splits, and the corresponding
training data sizes / cap on training updates.

Task Type 1% 5% 10%

SD speaker 0.14k / 20k 0.70k / 20k 1.39k / 50k
SID speaker 1.38k / 20k 6.92k / 50k 13.8k / 100k
SF semantics 1.05k / 100k 5.24k / 100k 10.5k / 100k
IC semantics 0.23k / 20k 1.16k / 20k 2.32k / 50k
KS content 0.51k / 20k 2.56k / 50k 5.11k / 50k
ASR content 0.28k / 50k 1.43k / 100k 2.86k / 200k
ST semantics 2.88k / 32k 14.4k / 32k 28.8k / 32k

base.en, small.en and medium.en4, denoted as BASE, SMALL
and MEDIUM. Our baseline models are WAV2VEC 2.0 LARGE5

(W2V2) [3] and WAVLM LARGE6 (WavLM) [6]. We report
the maximum number for training updates in Table 2. We
use the SUPERB evaluation pipeline by freezing the encoders
for downstream tasks while attaching a benchmark-specified
lightweight prediction head for each task, unless mentioned
otherwise. We adopt the identical training configuration (e.g.,
batch size, optimizer) for all models based on SUPERB hyper-
parameter settings. Experiments were done on 1xRTX 6000
GPU with 48GB Memory.

3.2. Main Results

We report results in Table 1. Overall, Whisper variants outper-
form W2V2 and WavLM on the majority of tasks in various data
conditions with fewer updates except for SID. We summarise
the findings for each task as follows:
• IC Various Whisper models exhibit a significantly better per-

formance in all settings. Even with 1% of fine-tuning data,
BASE surpasses WavLM by 150% with a faster convergence
rate. As the size of training data increases, Whisper on aver-
age converges 10× faster than W2V2.

• SF As data resources become more scarce, the benefits of

4https://github.com/openai/whisper
5https://huggingface.co/facebook/wav2vec2-large-lv60
6https://huggingface.co/microsoft/wavlm-large
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Figure 1: t-SNE visualisation of the representation spaces produced by the encoders on KS (top) and IC (bottom) tasks training set
(prior to fine-tuning) with colours indicating class labels.

using Whisper become more eminent in training speed and
performance. Notably, MEDIUM outperforms the baselines
by a large margin with 50% less number of updates.

• SD MEDIUM significantly outperforms the baselines in all
settings. BASE and SMALL (despite being 75% and 90%
smaller) converge much faster with better or comparable per-
formance compared to W2V2 and WavLM. Note that al-
though SD is regarded as a speaker task, content information
is still required as models tend to distinguish speaker times-
tamps by content, not just speaker features.

• KS Whisper dramatically boosts the performance with higher
convergence speed. BASE and MEDIUM, fine-tuned on 1%
and 5% of task data, surpass W2V2 (96.66) and WavLM
(97.86) models that are fine-tuned on 100% of task data.7

• ASR Whisper models achieve robust performance at 1%,
i.e., the extremely low data condition, with a few thousand
updates. MEDIUM outperforms WavLM even though the
latter was pre-trained on Librispeech and the former was
not, whereas W2V2 has difficulties to converge. W2V2 and
WavLM gradually pick up as the amount of training instances
increases.

• SID Whisper models perform poorly on this task. Our hy-
pothesis is that Whisper pre-training places emphasis on
capturing content (via mapping audios to text) rather than
speaker information and speech features that are important
in SID (a speaker task). In contrast, W2V2 and WavLM,
which are pre-trained only on speeches, are better positioned
to tackle this task. We will unpack this hypothesis later.

• ST Whisper models do not perform well on translation, even
with the increase in training corpus size. This could be due to
replacing the internal Whisper decoder (i.e., used during the
pre-training phase) with SUPERB’s decoder. Nonetheless,
Whisper still achieves the best performance at 1% and 5%
compared to the baselines.

3.3. Analysis and Discussion

In this section, we start with a qualitative comparison of the pre-
trained representations produced by Whisper variants, W2V2
and WavLM. We then measure the utilisation of the represen-
tation space through isotropy, and finish by investigating the
information captured at different layers of these encoders.
t-SNE. We create t-SNE visualisations of the training data of

7The numbers are obtained from SUPERB Leaderboard at the time
of writing this paper.

KS and IC with the vanilla encoders, as shown in Figure 1. On
KS, the embedding space of Whisper exhibits a better clustering
of speech representations compared to W2V2 and WavLM, fa-
cilitating a much faster fine-tuning convergence and better task
performance. This is less eminent on IC, although represen-
tations of Whisper are still better clustered than the baselines.
This also explains why the performance of Whisper at 1% on
IC is less remarkable compared with the KS task (but still far
exceeds the baselines). Furthermore, the relatively tangled em-
bedding spaces are partially due to the IC task having more
classes than KS (31 vs. 12), which increases the overall task
difficulty. We also produced the visualisation on SID, and ob-
served a much worse clustering pattern compared with IC, ex-
plaining the weaker performance of Whisper on this task.
Isotropy. The geometry of representations generated by
pre-trained Transformer have been shown to suffer from the
anisotropy problem [21]. Ideally the representations should
be uniformly distributed in a spherical space (isotropic), but
in practice they only occupy narrow regions of the embed-
ding space (anisotropic) [22]. The average isotropy scores of
W2V2, WavLM, and Whisper (average of the three versions)
on 7 downstream task datasets are 1e-300, 1e-14, and 1e-2, re-
spectively. While being several orders of magnitude better than
the other baselines, the Whisper’s isotropy even approaches that
of a text embedding space (i.e., compared with 1e-1 of the Mir-
rorBert text encoder [23]). This indicates that Whisper largely
mitigates the anisotropic problem that the other baselines face.

Task Fine-tuning. We adopt different strategies to generate
speech representations. For the baselines, the weighted-sum
of hidden states of each layer is considered as the feature for
downstream task heads. For Whisper models, we considered
only the last-layer output from the encoder8 as speech represen-
tation for SUPERB downstream fine-tuning. We refer to this
as the Vanilla configuration, which is our default in the previ-
ous sections. In Table 3, we compare the performance of the
Vanilla setting with that of the Weighted-sum and Fine-tuned
Whisper.9 We observe that across most tasks the Vanilla version
works best, while for the SID task, the Weighted-sum represen-

8The pre-training process of Whisper involves an encoder-decoder
where the encoder provides the last-layer output to its decoder, but for
the other baselines (which are encoder-only models), more emphasis
is placed on the connection between the intermediate encoder layers,
suggesting a higher gain for them to be achieved from aggregating in-
formation across several layers for downstream tasks.

9We freeze Whisper for Weighted-sum and unfreeze for Fine-tuned.
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Table 3: Task performance of Whisper models, under different settings of task fine-tuning: Vanilla (V) denotes the Whisper encoder is
frozen and its last-layer output is used as the task feature. Weighted-sum (W) is similar to Vanilla except for the construction of task
features for which the weighted-sum of each layer’s hidden state is taken. Fine-tuned Whisper (F) is also similar to Vanilla, except the
encoder is no longer frozen and is fine-tuned together with the downstream task. -: The Whisper MEDIUM could not be fine-tuned due
to the limitation of GPU memory.

KS↑ IC↑ ASR↓ SID↑
Tr. Model V W F V W F V W F V W F

1
%

BASE 96.79 94.87 93.12 67.04 34.06 41.92 26.43 31.97 62.00 2.66 6.35 5.61
SMALL 96.62 95.81 97.31 57.63 33.54 72.24 20.27 25.71 44.68 3.35 8.71 7.32

MEDIUM 96.72 95.52 - 73.74 34.19 - 17.56 24.56 - 3.97 12.48 -

5
%

BASE 97.44 97.31 95.52 95.39 90.46 96.28 16.18 17.37 30.51 11.63 25.74 25.90
SMALL 97.73 97.31 97.05 95.78 90.46 95.86 11.76 12.85 41.61 13.47 36.90 34.07

MEDIUM 97.95 97.57 - 98.23 89.48 - 9.75 11.12 - 17.94 45.22 -

1
0
%

BASE 97.24 97.24 95.88 96.92 90.43 97.47 13.41 13.59 25.11 19.48 41.20 45.78
SMALL 97.63 97.53 97.37 96.44 93.33 98.10 9.47 10.09 38.03 23.04 55.02 53.55

MEDIUM 97.96 97.54 - 98.78 95.28 - 7.74 8.52 - 30.05 65.51 -
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Figure 2: The weight coefficients distribution of layers. The
x-axis denotes different layers; the y-axis denotes the weight
coefficients. Vanilla: the weight of vanilla Whisper on tasks.

tations is a better choice suggesting that speaker information is
retained in the intermediate layers of Whisper. In general, the
Fine-tuned Whisper that uses the last-layer output as features
underperforms the Vanilla variant with the frozen encoder, in
the extreme low-data conditions (i.e., 1%). We speculate this
occurs as the captured knowledge stored in Whisper will be dis-
rupted after fine tuning the model on the small task data. As
the size of training corpus increases, the trend continues for KS
and ASR. For IC and SID, depending on the size of Whisper,
Fine-tuning may surpass Vanilla.

Weight Coefficients Distribution. We visualise the distribu-
tion of the weight coefficients (i.e., signifying the contribution
of the corresponding layer in task fine-tuning) attached to each
layer of Transformer and learned during the fine-tuning step in
Figure 2. The numbers are based on fine-tuning in the 10%
training size. For Wav2vec2, WavLM and Whisper MEDIUM
encoders on 4 tasks we observe different patterns of layer con-
tribution layers. The Figure also reveal that the speech features
are distributed in various layers of the encoders. An interesting
pattern is SID which places more emphasis on the last layers of
W2V2 and WavLM, but shifts that to the intermediate layers of
Whisper, indicating a stronger presencce of speaker features in
its intermediate layers. As expected we observe that for Whis-
per and ASR task, most of the importance is placed on the final
layers of the encoder. This also verifies why the Vanilla config-
uration (which uses the last-layer as the task feature) is better at
content-related tasks compared with a speaker task like SID.
Summary. We highlighted the quality of speech representa-
tions generated by Whisper. Compared to W2V2 and WavLM,
the Whisper BASE and SMALL have notably much fewer pa-
rameters, less than 100M, which leads to faster training conver-
gence and inference. The representations achieve state-of-art
performance on several downstream tasks. Regarding specific
tasks (refer to Table 3), we observed that the Vanilla Whisper
for content tasks (ASR and KS) performs well in the very low-
resource scenario. On IC, we observed that Whisper benefits
more from fine-tuning with increasing number of training in-
stances and model size. Vanilla did not do well overall on SID
whereas the Weighted-sum improved the results substantially.

4. Conclusion
In this paper, we evaluated the performance of three widely
used pre-trained speech encoders in the low-resource setting
on 7 diverse speech tasks from the SUPERB and SUPERB-SG
benchmarks. We analysed the generated speech representations,
for their qualitative and quantitative properties. Additionally,
we looked at the internal contribution of layers from these en-
coders in various downstream task settings. Our findings high-
lighted the superior capabilities of the recent Whisper model’s
encoder for most of the semantic-content tasks and its perfor-
mance degradation on speaker-focused task. We established a
connection between the pre-training protocol of these models
and their representational properties, and their downstream task
performance.
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