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Abstract
The automatic video dubbing task is proposed to meet personal
and industrial demands for dubbing. Current methods mostly
focus on duration matching and overlook the synchronization
of prosody, and thus lack expressiveness. In this paper, we in-
troduce visual prosody modeling to promote expressiveness for
video dubbing, defined as the expression and head pose in 3D
space, which has the advantages of 1) high relevance to the tone
and stress of utterances; 2) more accurate than 2D images; 3)
disentanglement from irrelevant factors such as speaker identity.
We propose a 3D-VD (3D Video Dubber) system to incorporate
visual prosody, utilizing a visual-text step-wise aligner to con-
trol the generated prosody. Experiments demonstrate that the
proposed method outperforms previous methods that only con-
sider 2D face images in terms of naturalness, lip-speech align-
ment, and synchronization of visual and auditory prosody. The
case study demonstrates the correlation between expression and
pitch.
Index Terms: visual text-to-speech, speech synthesis, multi-
modality generation

1. Introduction
Dubbing, in video production, describes the process of adding
new dialogue of actors to the soundtrack, commonly required by
both commercial film companies and self-published video blog-
gers. With the explosion of short videos and the development
of the film industry, there is a huge demand for video dubbing
techniques. However, video dubbing is costly, requiring a spe-
cific recording studio and professional voice actors, as well as a
certain recording period.

The Automatic Video Dubbing (AVD) task [1], proposed to
meet the demand of automatic dubbing, is to synthesize speech
synchronized with a given silent video according to the corre-
sponding script. Current deep learning methods mainly focus
on two aspects: duration control and lip synchronization. The
former usually involves machine translation (MT) techniques
to improve the duration matching [2, 3, 4]. The latter mostly
focuses on text-to-speech (TTS) methods to promote synchro-
nization between the lip and the speech. For example, visual
TTS [5] establishes a text-video aligner and a vision fusion
module to introduce lip motion to control the generating pro-
cess of Tacotron2 [6]. However, all of these methods overlook
the prosodic relationship between video and speech, resulting in
the lack of expressiveness of generated speech, hardly meeting
the needs of voice dubbing for expressiveness.

One of the approaches to obtain expressiveness is to use
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video information to conduct prosody modeling. The ex-
pression and movement of the speaker, described as “visual
prosody”, always convey concordant information consistent
with the speech prosody, such as tone and emphasis [7]. The
head movement correlates strongly with the pitch (fundamental
frequency) and amplitude of the talker’s voice [8]. For example,
shaking heads and staring may reflect a high-level activation of
emotion. Due to the significance of visual prosody, it is practi-
cal and necessary to explore the manipulation of visual prosody
in video dubbing, which can enhance the naturalness and ex-
pressiveness of the synthesized speech. There exist two main
challenges to applying visual prosody: 1) How to capture and
model the visual dynamic characteristics of the speaker; 2) How
to align this visual feature with text in a typical TTS architec-
ture.

Previous works explored various types of representations
of visual prosody. For example, facial gestures and emotions
using the pleasure-arousability-dominance (PAD) model are re-
lated to pitch changes [9, 10, 11]. Recent studies, such as
Neural Dubber [1], have proposed a text-video aligner adapt-
ing multi-head attention [12] and upsampling to align text with
video for speech synthesis, generating fluent and natural dubbed
videos. VDTTS [13] introduces a multi-source attention mech-
anism that concatenates the context vectors of features from two
modalities. However, the diagonal constraint overlooks the dif-
ferent lengths of pauses and does not strictly guarantee mono-
tonicity. To summarize, these works are meaningful but lack
relevance and accuracy in terms of prosody modeling and align-
ment.

In this paper, we define visual prosody as expression and
head pose in 3D space. It has three advantages: 1) Relevance.
Expression and pose of the speaker are highly related to the
pitch and stress of the utterance [7, 14], such as the correla-
tion between excited expression and high tone. 2) Accuracy.
The expression and pose information obtained from a three-
dimensional (3D) face is more accurate than that from the two-
dimensional (2D) method, containing semantic information that
can restore the face. 3) Disentanglement. Compared with the
face, face representation decouples the noise information such
as speaker identity and illumination. We incorporate the vi-
sual prosody and mouth region embedding coherently, not only
predicting pronunciation and duration information but also im-
proving the ability of pitch and energy prediction that are highly
correlated with the expressiveness of the generated speech. In
addition, we adopt stepwise attention [15] for better alignment
between visual and audio modalities. The method keeps strict
monotonicity in TTS and constraints on hard attention, ensur-
ing that the alignment between the visual and audio sequences
is monotonic without skipping visual frames.

We propose a multi-modal framework, named 3D-VD (3D
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Figure 1: The pipeline of our model. We first reconstruct the 3D face and its parameters from video frames. Then we incorporate
expression and pose with mouth features, aligning the prosody with the visual information, to generate the speech from the given text.

Video Dubber), to incorporate visual prosody. First, we employ
a 3D face constructor to restore the 3D face shape and param-
eters of its expression and pose from a video. We concatenate
the visual prosody with mouth features extracted from a visual
encoder. Then we utilize a visual-text stepwise aligner to align
the visual and text features and upsample the aligned context
features to the length of mel-spectrogram features. The aligned
features are utilized to predict the pitch and energy of the speech
because it contains the information from the visual prosody.
We implement our framework on a dataset from Lip2Wav [16]
and conduct experiments. Objective comparison and subjec-
tive evaluations suggest that the speech produced by our model
qualifies for matching the visual prosody of the speaker, along
with high audio quality and synchronization, outperforming the
method considering 2D face image merely.

We summarize our contributions as follows:

• We introduce visual prosody matching in video dubbing
tasks, that is, the prosody of synthetic speech is matched with
the visual prosody (pose, expression) of the speaker;

• We model the visual prosody information in the form of 3D
face parameters, and build a complete framework for synthe-
sizing synchronous and expressive voice from silent video;

• The experimental results show that the proposed model is
better than baselines in naturalness, synchronization, and ex-
pressiveness, and demonstrates the correlation between vi-
sual prosody and speech prosody.

2. Methodology

In this section, we introduce the framework of our 3D-VD as
shown in Fig 1. First, we employ a 3D face constructor to re-
store 3D face shape and parameters of its expression and pose
from a video. We concatenate the visual prosody with mouth
features extracted from a visual encoder. Then we utilize a
visual-text stepwise aligner to align the visual and text features.
The aligned features are utilized to predict the pitch and energy
of the speech, and finally converted to mel-spectrogram.

2.1. Visual Prosody and 3D Face Reconstruction

Given a video clip Sv = [V1, V2, ...VTv ], we restore the 3D
face model and extract the parameter vectors of expressions and
poses, as e = [e1, e2, ..., eTv ] and p = [p1, p2, ..., pTv ] respec-
tively. By this approach, we only reserve the related factors, dis-
carding the parameters of speaker identity, lighting, and other
parameters which are irrelevant to visual prosody. We adopt the
FLAME [17] statistical face model to represent each face and
infer the reconstructed parameters by DECA [18] model.

The face model M is controlled by three groups of parame-
ters: facial identity i ∈ R|i|, pose p ∈ R3k+3 (where k is addi-
tional joints of neck, jaw, and eyeballs) and expression e ∈ R|e|.

M(i, p, e) = W (TP (i, p, e), J(i), p,W) (1)

where W (T, J, p,W) is a blend skinning function, rotating the
vertices of the face in T ∈ R3n around the joints J ∈ R3k. W is
blendweights for linearly smoothing. J provides joint locations
by identity i.

Finally, we introduce the visual prosody v =
[v1, v2, ..., vT ], defined as the concatenation of sequences
of expression e and pose p.

vt = [et; pt] (2)

2.2. 3D Video Dubber

We incorporate the visual prosody and utilize it to control the
speech synthesis by 3D-VD. Given a silent video frame se-
quence Sv and a phoneme sequence Sp = [P1, P2, ..., PN ], the
3D-VD predicts a dubbing mel-spectrogram sequence Sm =
[M1,M2, ...,MTm ]. The overall model architecture of 3D-VD
is shown in Figure 1.

The text encoder turns the phoneme sequence Sp into hid-
den representations Hp = fp(Sp) ∈ RN×d, where d is the
dimension of hidden space. In the visual module, video frames
are processed by a 3D reconstruction fr and a visual encoder
fv respectively. The face image sequences are cropped from
the video and sent to the 3D reconstruction to extract the visual
prosody v = fr(Sv) ∈ RTv×(3k+3+|e|). The visual encoder
converts the images only containing the mouth region of the
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speaker into mouth features m = fv(SV ) ∈ RT×|m|. The vi-
sual prosody v is concatenated to the mouth features m, and
turned into visual hidden sequences Hv = [v;m] ∈ RTv×d.

Then we feed Hv and Hp to the visual-text stepwise aligner,
which is introduced in detail in the next subsection, to get
the aligned mel-spectrogram hidden sequence Hm ∈ RTm×d,
which contains both content information (phoneme and viseme)
and prosody information.

After the alignment, a variance adaptor utilizes Hm to pre-
dict the pitch and energy by different predictors. Following
Neural Dubber [1], our variance adaptor contains no duration
predictor, because the video and audio are naturally aligned,
despite the mismatch between the length of the text and audio
sequence.

2.3. Visual-Text Stepwise Aligner

We employ the visual-text stepwise aligner to align the video
and text sequence to the same length as the speech. It not only
requires the alignment of the content, which is between the lip
motion and phoneme, but also the alignment of the visual and
auditory prosody, which is between the expression and head
pose of the speaker and the pitch and energy in the utterance.

Stepwise attention [15] is an expanded variation of mono-
tonic attention. Monotonic attention [19] is effective to ensure
the monotonicity and locality of alignment. The mechanism
generates attention scores step by step: Given the visual fea-
tures Hv as query entry and text feature Hp as key and value,
an energy value is calculated as the attention score of multi-head
scale-dot attention [12]:

E = Attention(Q,K) =
HvH

T
p√

d
(3)

Instead of directly calculating the attention scores, the energy
value produces a select probability to decide the attention score
step by step:

P = Softmax(E) (4)

At each time step, the method decides whether to inspect the
next entry by sampling from a Bernoulli function, as zi,j ∼
Bernoulli(pi,j). Instead of a “soft” attention with continuous
weights, the “stepwise” property means that it only decides to
move forward by one step or stay at the temporary step.

ai,j = ai−1,j−1(1− pi,j) + ai−1,jpij (5)

where ai,j is one element of the attention score matrix A. Fi-
nally, we get the visual-text context features by applying the
attention scores to the value matrix Hp:

Hc = AHp (6)

The context vector has the same length as Hv , which is
naturally aligned with the mel vector because video and audio
are synchronized in time sequence. Therefore, we can align
the context feature to the mel feature by applying the ratio of
respective sampling rates r.

Hm = Upsample(Hc, r) (7)

Practically, r = sr/hs
FPS

, where sr is the sampling rate of the
waveform, hs is the hop size of the mel-spectrogram and FPS
is the frame rate of the video.

Table 1: The results of subjective tests. MOS Scores are pre-
sented with 95% confidence intervals.

Method
MOS

Naturalness AV Sync Prosody Sync

GT (Mel+vocoder) 4.82 ± 0.01 4.81 ± 0.01 4.75 ± 0.01

FastSpeech2 2.83 ± 0.09 2.19 ± 0.13 2.42 ± 0.11
Neural Dubber 3.50 ± 0.04 4.24 ± 0.02 4.04 ± 0.03
3D-VD (ours) 3.68 ± 0.04 4.30 ± 0.03 4.13 ± 0.03

3. Experiment
3.1. Dataset

We utilize a part of Lip2Wav [16] dataset, the chemistry lecture
sub-dataset, described as Chem below, with diverse information
on speaker expressions and head poses, and also a rich diversity
of speech prosody. It contains 346 video clips of several min-
utes individually from YouTube.

We first collected and segmented the scripts, and then fil-
tered the clips without the face of the speaker. Finally, we con-
struct our dataset consisting of 7,216 clips with scripts, having
a total duration of around 9 hours. We randomly split Chem as
6,873 samples for training, and 343 samples for evaluation.

3.2. Implementation Details

Data Preparation. We resample the audio with the sample
rate 19.2kHz, corresponding to the 30 FPS of videos. The win-
dow size and hop size are set as 640 samples and 160 samples.
Mouth regions are marked by facial landmarks and cropped
by a window whose size is 1.25 times the mouth landmarks.
Cropped images are resized as 96 × 96. The dimension of the
expression e and pose p is 50 and 6.

Model Configuration. The visual encoder has an architec-
ture following Lipreading [20], starting with a 3D convolution
layer and consisting of a ResNet18 as its main part [21]. The
configurations of the FFT block, the mel spectrogram decoder,
and the variation adaptor (including pitch and energy predic-
tors)are the same as those in FastSpeech 2 [22].

Training. We train our model on 8 NVIDIA V100 GPU
for 450k epochs, with a batch size of 16. We adopt the Adam
optimizer with a learning rate of 0.0625. We use HiFiGAN [23]
as our vocoder, and train on 1 NVIDIA V100 GPU for 1000k
steps.

3.3. User Study

To examine the generation quality, we carried out the subjective
test to assess the Naturalness, AV Sync, and Prosody Sync.

Comparison Systems. We compare the performance of
our model with some alternative systems to synthesize speech.
GT (Mel+Vocoder). We convert the ground truth audio to mel
(mel-spectrogram) and then reconstruct the mel to the wave-
form. We utilize this process to avoid the disturbance involved
by the vocoder. FastSpeech2 [22]. We adopt an open-source
implementation 1, which generates speech only from the text.
Neural Dubber [1]. It aligns the mouth and text features. We
force its multi-head attention with stepwise constraints, as the
reason discussed in Section 3.4.

1https://github.com/ming024/FastSpeech2
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We use the mean opinion score (MOS) to evaluate the de-
gree of satisfaction of users. The range of MOS is 1-5 with 1
point interval, the higher the better. We randomly sampled 15
video clips from the evaluation set, and we replaced the audio
of these samples with the audio produced by the methods men-
tioned in Section 3.3. We provided the same text and video to all
participants. 21 evaluators participated in the subjective tests.

Naturalness. We adapt this index to evaluate the noise level
and pronunciation of the generated speech. As shown in Ta-
ble 1, our model achieves a higher level than Neural Dubber
and also surpasses FastSpeech2, indicating our system gener-
ates high-quality utterances. AV Sync, i.e. the synchroniza-
tion between audio and lip motion. 3D-VD slightly outperforms
Neural Dubber, indicating that the expressions can also help the
alignment of lips because the lip motions also drive the facial
muscles. Prosody Sync, which is the synchronization between
speech prosody (tone, emphasis, etc.) and the expression and
head pose of the speaker. Our model outperforms Neural Dub-
ber, indicating that our model successfully captures the visual
prosody within the expression and pose and matches it with the
speech prosody.

All results listed above indicate that our model generates
speech with better quality, synchronization, and expressiveness,
outperforming baselines.

3.4. Ablation Study

We implement an ablation study to test the performance of our
model when each component is absent to examine the contribu-
tions of each component to speech generation.

LSE-D (Lip Sync Error-Distance) describes the minimum
offset to align the audio and video frames synchronously. The
lower the LSE-D, the higher the synchronization level of the
generated audio matching the video. LSE-C (Lip Syn Error-
Confidence) denotes the confidence score of the SyncNet to
decide the LSE-D. A higher score of LSE-C means a higher
probability to align the audio with the video. Following the
Lip2Wav [16], we use STOI and ESTOI for estimating intel-
ligibility and PESQ for measuring speech quality. The higher
these indicators are, the better the generation speech is.

We remove the 3D parameters and stepwise method from
our 3D-VD to verify the effectiveness of these two components.
As the results shown in Table 2, stepwise attention is signifi-
cant for the synchronization and audio quality. Without step-
wise enforcement, multi-head attention tends to predict vague
attention scores and unclear pronunciations. So that we add the
stepwise constraints to Neural Dubber in Section 3.3 for better
audio quality. The 3D parameters does not help improve the
LSE-D and LSE-C because these indexes mainly focus on the
alignment between lip motion and speech. However, the 3D pa-
rameters promote intelligibility in terms of STOI and ESTOI, so
that the generated speech is easier to understand. These results
also confirm the results of subjective tests in Table 1.

3.5. Case Study

We carry out a case study to intuitively demonstrate the relation-
ship between expression and pose coefficients and the generated
speech. We first define and calculate PV as the short-time pitch
variation of audio, which is the variation of the pitch in a slid-
ing window. We set the window size as 100 samples and the
hop size as 10 samples on the mel-spectrogram. Then we de-
fine pose and exp as the sum of the absolute value of the pose
and expression parameters and we normalize them between 0
to 1. We visualize the PV of utterances generated by different

Table 2: The results of ablation study. ‘w/o 3D’ means expres-
sion and pose vectors are not incorporated to 3D-VD. ‘w/o step-
wise’ means attention scores are not forced to align step-wisely,
equivalent to vanilla multi-head attention.

Method STOI ESTOI PESQ LSE-D(↓) LSE-C(↑)

3D-VD 0.542 0.354 1.12 6.93 8.13
w/o 3D 0.535 0.349 1.12 6.94 8.13
w/o stepwise 0.434 0.170 1.07 10.60 3.94

methods and corresponding pose and exp. As the case shown
in Fig 2, higher fundamental frequency usually corresponds to
a more obvious posture or expression, such as staring and shak-
ing head. As shown in the red box, our model captures the mo-
tion of looking up and staring and thus predicts a more accurate
pitch. Besides, the overall contour of 3D-VD is more similar to
GT rather than the one of w/o 3D, indicating that visual prosody
can help predict the prosody of speech.

Figure 2: The pitch variation of generated speech and the
corresponding pose and expression parameters (normalized to
[0,1]). 3D-VD captures the motion of looking up and staring
and thus predicts a more accurate pitch.

4. Conclusion
In this paper, we model the visual prosody information in the
form of 3D expression and pose parameters, and build a com-
plete framework for synthesizing synchronous and expressive
voice from silent video. The 3D visual prosody takes the ad-
vantages of high relevance to speech prosody and disentangle-
ment from noise information. The experimental results show
that the proposed model is better than baseline in naturalness
and synchronization, and demonstrate that the correlation be-
tween visual prosody and speech prosody.
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