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Abstract 
This paper presents an electromagnetic articulography 

database of Japanese sentences. The database includes aligned 
acoustics and articulatory data from seven males and three 
females, with a total of five recorded hours. The database is now 
in preparation for public release to foster research in areas of 
acoustic-to-articulatory inversion, brain-machine interface 
communication systems, artificial speech synthesis, and dialect 
recognition. Moreover, based on this database we established 
an acoustic-to-articulatory inversion system using a deep, 
bidirectional, long short-term memory recurrent neural network 
structure. The results showed that, for the Japanese language, 
adding English corpora to the training was not beneficial for 
this speaker-independent model. 
Index Terms: electromagnetic articulography, acoustic-to-
articulatory inversion, bi-LSTM 

1. Introduction 
Brain machine interfaces (BMI), which act as communicative 
bridges between severely paralyzed patients and external robot-
assisted equipment, have attracted increasing attention from 
academic researchers and the public for their recent 
encouraging brain science advancements. One of the most 
amazing achievements is a speech neuroprosthetic technology 
by Anumanchipalli et al.[1], which utilized a two-step method 
to first decode cortical signals into representations of 
articulatory movements, and then to transform the 
representations into audible speech. However, one challenge to 
this work is how to track intermediate articulatory 
representations between the neural and acoustic signals in 
clinical settings, because it is difficult for patients to record 
articulatory trajectories with electrocorticography (ECoG) 
equipment. One strategy is to use recent advances in acoustic-
to-articulatory inversion (AAI) to estimate reliable natural 
vocal kinematic trajectories from audio recordings alone[2, 3]. 
AAI is a technique that infers articulatory kinematic trajectories 
(AKTs) from speech signals only[4]. The inferred AKTs have 
contributed to the improvement of text-to-speech synthesis[5, 
6], speech recognition[2, 7], and automatic detection of speech 
production deficits in Parkinson’s disease[8]. Speaker-
independent articulatory reconstruction is also essential for 
BMI applications. Following the method of Liu et al.[9], we 
employed a deep, bidirectional, long short-term memory (bi-
LSTM) recurrent neural network structure to model and predict 
speaker-independent articulatory trajectories. Generally, the 

network transforms the input of acoustic features to the output 
of synchronized articulatory coordinates. 
Articulatory corpora are inevitable for training such a model. 
Electromagnetic articulography (EMA) is the most widely used 
point-tracking-based technique for the study of speech 
production[10]. EMA data help capture the configurations of 
the continuous movements and the locations of the lips, tongue 
and jaw, with high spatial resolution. Such a technique provides 
accurate aligned acoustic signals, and inside the vocal AKTs 
use sensors attached to the tongue, lips, and jaw[11, 12]. 
Some researchers have established their publicly available 
EMA databases, such as the USC-TIMIT[13], the MOCHA-
TIMIT[14], the TORGO[15], the EMA-MAE[16], the 
mngu0[17], the Haskins[18] databases in English, the 
MSPKA[19] in Italian, the DKU-JNU-EMA[20] in Chinese, 
the Mandarin-Tibetan speech corpus[21] in Tibetan, and the 
database of Norwegian speech sounds[22] in Norwegian. 
However, there is no such EMA corpora dataset in the Japanese 
language. 
In this study, we establish an EMA database in the Japanese 
language for the first time. The data were obtained from seven 
males and three females, for a total of five recorded hours. 
Then, we used this database to train a bi-LSTM-based AAI 
model. We believe this database may play an important initial 
role in AAI for the Japanese language, as well as further 
improving the BMI communication system, artificial speech 
synthesis, and dialect recognition. 

2. EMA database 

2.1. Data collection 

We named this the OU-EMA database (OU is short for Osaka 
University). We used the NDI WAVE electromagnetic 
articulography system[23] to track real-time inside vocal 
trajectories. Participants were asked to attach seven recording 
sensors inside their mouths, with one reference electrode placed 
at the bridge of the nose. Table 1 and Figure 1 show the sensor 
locations: tongue tip (TT), tongue body (TB), tongue dorsum 
(TD), upper lip (UL), lower lip (LL), and lower incisor (LI). In 
addition, a microphone (Marantz Professional MPM-1000) was 
used to record the speech signal. 
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Table 1: Sensor locations. 

Location Label Location Label 
Tongue dorsum TD Lower incisor LI 
Tongue body TB Upper lip UL 
Tongue tip TT Lower lip LL 
Upper incisor UI Nose root RF 

 

 
Figure 1: Sensor locations. 

2.2. Data composition 

This database included up to 4050 sentence utterances (303 min 
in total) from 10 subjects (7 male, 3 female). Participants were 
asked to read complete sentences from the ATR503[24], a set 
of 503 short sentences designed to include the main connected 
speech processes in the Japanese language. The acoustic signal 
was recorded by a microphone at 22050 Hz sample rate. In the 
articulatory signal, the NDI WAVE system monitored X, Y, Z 
coordinate data for each sensor at a sampling frequency of 100 
Hz. Each recorded utterance included both articulatory and 
acoustic data. We checked the recording quality for every 
sentence and excluded defective ones. For the mis-tracked 
points in the data, we used the function ‘fillmissing’ in 
MATLAB 2020b [25] to fill the interpolated values. The 
estimated mis-tracked rate is about 0.35% of this dataset. The 
reading materials were integrated into the database. The forced 
alignment for each speech audio file-transcription pair was 
performed using the Julius[26], an open-source speech 
recognition engine for Japanese that captures the beginning and 
ending times of each phoneme. 

3. Acoustic-to-articulatory inversion 

3.1. Data preprocessing 

We used midsagittal plane data (X as back/front and Y as the 
up/down coordinates of the EMA signals) from six sensors for 
training. The ‘UI’ sensor was excluded from the analysis 
because the sensor on the upper incisor was not moved relative 
to the reference sensor. Consequently, 12 dimensional 
coordinate vectors were derived. We smoothed each 
articulatory trajectory using a low-pass filter with a cutoff 
frequency of 20 Hz. Then, the articulatory vectors were 
normalized by subtracting the mean over 60 previous and 
subsequent recordings from each speaker, and then dividing by 
the speaker-specific standard deviation.  

The acoustic waves were downsampled from 20050Hz to 
16000Hz. We used the first thirteen dimensional mel-frequency 
cepstral coefficient (MFCCs) features for each utterance. The 
offset silences were removed based on the transcript labels. The 
thirteen MFCCs were normalized for each speaker and were 
used as input, with a window size of 25 ms and stride of 10 ms. 
Then, second-order delta features were added to obtain the 39 
dimensional MFCC features[27]. We also added 10 context 
windows: the five previous and five subsequent frames, as in 
[28]. 

3.2. Training 

We used a bidirectional recurrent neural network architecture 
similar to Liu’s[9], with a convolutional layer as a low-pass 
filter. We used the root mean-squared error (RMSE) as the loss 
function in the training procedure for measuring the 
performance of AAI systems. We used the Adam optimizer 
with early stopping on the validation set (learning rate 0.001, 
batch size 10, patience 5). The weights of the low-pass filter 
were fixed with N = 50 to give a transition band of 0.08. The 
convolution had one channel, a stride of 1, and padding such 
that the output had the same size as the input. All training 
processes consisted of the following steps: (1) validate on a 
subset of the speakers (10%), (2) test on one speaker, and (3) 
train on the rest (90%). 

3.3. Test results 

In order to test the quality of the OU-EMA database in training 
the AAI model, we compared the articulatory reconstruction 
results with an already-established EMA database, the 
Haskins[18]. We used a speaker-independent setting: nine 
speakers’ data for training and one speaker’s data for testing. 
The articulatory reconstruction was evaluated by the RMSE and 
Pearson’s correlation (r). Table 2 compares the results of the 
OU-EMA database with the Haskins in the same AAI system. 
Figure 2 shows the results of the predicted and target 
articulatory trajectories of the AAI system for all recording 
sensors. The inferred kinematic trajectories were well aligned 
with the real measured ones. 

 
Figure 2: Predicted and target articulatory trajectories of the 
AAI system. The sentence is ‘En kei no ki do: ni so’!te chi kyu: 
o me gu’!te i ru’. (sp: silent period) Translation of the sentence: 
revolving around the earth in a circular orbit. 
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Table 2: Articulatory reconstruction results. 
(*n=normalized. Smaller is better for RMSE.) 

Database RMSE n-RMSE r 
OU-EMA 2.961 0.724 0.704 
Haskins 2.958 0.625 0.752 

 

4. Merging languages corpora test 
To answer the question: Do we have to set up a new database 
in the Japanese language, or is it feasible to invert one based on 
another language, we compared the results of single, cross, and 
merging corpora. For the single corpus, the training and testing 
data were from the same database. For the cross corpus, we 
trained in one language and tested the model in the other 
language. For the merging corpus, the model was trained on 
speakers from both languages. 
As shown in Table 3, the reconstruction results for the cross 
corpus were worse than those for the single-corpus condition, 
showing that it is important to establish a new database in a 
specific language. In addition, the results of the merging corpus 
were not better than those of the single corpus, suggesting that 
adding corpora from another language to the training is not 
beneficial to the speaker-independent model. This result is 
similar to Parrot et al.[29], who reported that reconstruction 
measures were not improved with the addition of different 
corpora. This indicates that although the AAI system is 
language-independent, the differences in pronunciation patterns 
that exist in different languages lead to potentially worse 
articulatory reconstructions when they are used together. 

Table 3: Articulatory reconstruction results. 

 Training Testing RMSE n-RMSE r 

Single-
corpora 

OU-EMA OU-EMA 2.961 0.724 0.704 
Haskins Haskins 2.958 0.625 0.752 

Cross-
corpora 

OU-EMA Haskins 3.741 0.790 0.568 
Haskins OU-EMA 3.659 0.895 0.492 

Merging-
corpora Both 

OU-EMA 3.180 0.778 0.667 
Haskins 2.899 0.612 0.755 

5. Conclusions 
This paper introduces the OU-EMA database, a new 
electromagnetic articulography database in Japanese. This 
database could potentially benefit research in BMI and related 
areas. We also established an acoustic-to-articulatory inversion 
system based on this OU-EMA database. The results showed a 
relatively good performance by the AAI system in the 
estimation of articulatory trajectories from only an acoustic 
signal. Moreover, we suggest it is valuable to establish a new 
EMA database in a specific language. 
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