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Abstract
The objective of this paper is to advance the development of
technologies in the fields of speaker recognition and speaker
identification by introducing a large labeled audio database
VoxTube collected from the open-source media.

We propose a fully automated unsupervised approach for
audio labeling that requires any pre-trained speaker recognition
model. Collected with this approach from videos with CC BY
license the VoxTube dataset contains more than 5.000 speakers
with more than 4 million utterances pronounced in more than
10 languages. In our paper we show the VoxTube’s high gener-
alization ability across multiple domains by evaluating the ac-
curacy metrics on various speaker recognition benchmarks. We
also show how well this dataset complements an already exist-
ing VoxCeleb2 dataset.
Index Terms: dataset, speaker recognition, speaker verifica-
tion, speaker identification

1. Introduction
Despite the fact of a good quality on the publicly available
benchmarks and low amount of errors in scientific challenges
[1], [2], [3], [4], speaker recognition is still a challenging task
when it comes to the industry deployments. The voice bio-
metrics providers are required to deliver a solution unbiased
towards multiple domains combining varying features such as
language and age of a speaker, as well as to be robust in any
acoustic environment and towards any audio recording equip-
ment that can include varying preprocessing frontends. There
are multiple competitions focused on expanding the boundaries
of speaker recognition in each domain independently [5], [6],
[7], [8]. Nevertheless, in order to produce robust speaker em-
beddings and to provide the decent performance within any
domain it is important to have a big, representative and well-
labeled training data for supervised training techniques.

As it is shown in recent publications, amount of train-
ing speech data is important for both, self-supervised and su-
pervised training approaches [9], [10]. That being said, self-
supervisedly trained models show themselves as good feature
extractors that used for a following fine-tuning for a specific
task. This is also relevant for a supervisedly trained models,
where the backbone is pre-trained on the speech data with a
speaker recognition training loss and then it is used as a fea-
ture extractor for auxiliary tasks such as spoofing detection, lan-
guage classification and so on [11]. Thus one big and labeled
dataset could be utilized for both self-supervised and supervised
training techniques. However, the labeling could become the
bottleneck as it is usually cost expensive and slow, as it requires
human assessors work.

Being motivated by the work of the researchers from the

Oxford VGG group [12], [13] we came to an idea of expanding
and enhancing the power of open-source media and VoxCeleb2
[13] dataset and came-up with a customly developed unsuper-
vised collection and labeling pipeline for YouTube data that uti-
lizes the audio clips only. Such pipeline requires a pre-trained
speaker embedding extractor model that could be successfully
trained on the VoxCeleb2 data [14].

Our paper is organised in the following way. In Chapter 2
we give an overview of existing speaker recognition datasets.
Chapter 3 sheds a light on our data collection and labeling
method. In this chapter we also provide the description and
main statistics of the collected dataset. Chapter 4 contains our
baseline CNN model architecture overview as well as the exper-
imental setups. In Chapter 5 we present the accuracy metrics
for VoxTube training data and report the results of training our
baseline model using VoxTube and VoxCeleb2 together across
publicly available testing benchmarks. Finally, Chapter 6 sums
up our conclusions.

The VoxTube dataset can be downloaded from the project
web page1 at https://idrnd.github.io/VoxTube/.

2. Related works
The popular choices of data for training the speaker recogni-
tion models for a microphone (16 kHz) channel are LibriSpeech
[15], Mozilla Common Voice [16], VoxCeleb2 [13]. However,
there are a few limitations in each of them. For example, Lib-
riSpeech contains the english language utterances only. While
Mozilla Common Voice has a great lingual coverage and a lot
of speakers, it lacks the variability of recording sessions within
each speaker. In this sense VoxCeleb2 is a good choice for
speaker embeddings model training: it delivers a big amount of
speakers with a decent lingual coverage. The details of Vox-
Celeb2 dataset are presented in [13] as well as a collection
method which includes the face recognition model.

While the VoxCeleb2 is a current number one pick dataset
when it comes to speaker recognition, there is still room for
improvements, for example expanding the lingual coverage by
collecting more non-English speakers or increasing the number
of speakers in the dataset. As a result, we came to a conclusion
to expand the VoxCeleb2 dataset by collecting the additional
non-overlapping speakers. Moreover, we introduce a new col-
lection scheme that does not require a pre-trained face verifi-
cation model which limits the data collection of genres other
than interviews, for example, video gaming or devices unpack-
ing genre.

1https://github.com/IDRnD/VoxTube
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Figure 1: Scheme of filtration pipeline for one channel

3. VoxTube
3.1. Description

The VoxTube dataset was inspired by the VoxCeleb2 [13]
dataset, it also uses YouTube as its main and only source of
data. VoxTube contains over 4M utterances from more than 5K
speakers extracted from CC BY videos uploaded to YouTube.

In Table 1 we show the main statistics of a VoxTube dataset.
The language and gender distributions of the dataset are shown
in figure 2. VoxTube has a 60%/40% gender distribution same
as in VoxCeleb2. The language distribution in VoxTube differs
from the distributions in VoxCeleb-(1,2) datasets. VoxTube also
contains English as a predominant language accounting for ap-
proximately 30 percent. Yet such languages as Russian, Span-
ish and Portuguese are widely represented in VoxTube. We as-
sume that language extension to the existing VoxCeleb language
distribution can give a noticeable performance boost in a wide
range of testing domains when combined with the VoxCeleb2
dataset. While collecting, we have also validated that VoxTube
has no speakers overlap with VoxCeleb-(1,2).

Table 1: VoxTube dataset statistics

Dataset VoxCeleb2 VoxTube
# of POIs 6,112 5,040

# of videos 150,480 306,248
# of utterances 1,128,246 4,439,888

# of hours 2,442 4,933
Avg # of videos per POI 25 61

Avg # of utterances per POI 185 881
Avg length of utterances (s) 7.8 4.0

3.2. Collection pipeline

Borrowing the main idea of searching speakers on YouTube
from VoxCeleb2 paper [13], we came up with a hypothesis, that
there is a number of YouTube channels, that have predominantly
one person speaking. Mostly, such channels are easy to spot vi-
sually given only grid of video previews, or automatically by

clustering sequences of audio speaker embeddings from videos
and filtering out channels that don’t have a predominant cluster.
Based on this idea we’ve built our data collection pipeline.

Stage 1. Channels acquisition and filtering. We processed
metadata for multiple YouTube channels and filtered them by a
minimal number of available CC BY videos, subscribers, chan-
nel topic (video blogging, DIY, unboxing, gaming, education,
etc.) and some other attributes presented in meta.

Stage 2. Audio extraction. We extracted audio from all the CC
BY videos for each channel that passed Stage 1 of filtering. All
audios were decoded into 16-bit PCM wav format from webm
and mp4 containers that video hosting platforms use to store
video altogether with audio data. That being said, at this stage
we completely dropped any visual information from the source.

Stage 3. Extracting embeddings. First, we removed the si-
lence regions from audio using a simple Voice Activity De-
tection (VAD) model. Then, with a help of a pre-trained on
the VoxCeleb2 [13] dataset ResNet48 [11] speaker recognition
model we extracted embeddings for each audio with consecu-
tive and non-overlapping 2-seconds windows. This resulted in
speech representation tensors of a shape (T, D), where T = (du-
ration of audio) / 2 seconds, and D - is an embedding length.

Stage 4. Filtration. We have applied a two-stage filtration
(see fig. 1) based on the Hierarchical Agglomerative Cluster-
ing (HAC) over the extracted embeddings. Details of the filtra-
tion stage are covered in the following subsection. This stage
outputs are: ready for training audio segments of a predomi-
nant speaker cluster per channel and a corresponding median
embedding per such cluster.

Stage 5. Duplicates removal. Finally, we compared median
embeddings between each other and performed duplicates re-
moval by dropping one channel in a pair that had a high cosine
similarity score compared to the minimal threshold value. In
similar manner, we removed the speakers that duplicate speak-
ers from VoxCeleb-(1,2) at this stage.

3.3. Filtration

Filtration is heavily based on the assumption that most videos
within a channel contain a significant part (more than 30%) of
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a predominant speaker speech, which is the case for half of
YouTube channels. The main goal of the filtration stage is to de-
cide what speaker if present should be picked as a target speaker
and to eliminate any non-relevant segments that may contain a
collateral speaker and various noises. Both aims could be suc-
cessfully achieved automatically via filtration. The filtration al-
gorithm (fig. 1) could be split into 3 parts:

Stage 1. Video-level embeddings clustering. In the first part
of filtration, we consider each video independently from other
videos within the same channel. We cluster a sequence of audio
embeddings using HAC. For this, we utilized the scikit-learn
[17] implementation of HAC. We used a cosine similarity as a
metric, average linkage, and a distance threshold equal to 0.6,
which is the only tuneable hyperparameter here. The distance
threshold is directly related to the pre-trained verification model
that is used to generate speech representations. This stage out-
put is a cluster segmentation map and an average embedding of
each cluster. As an average, we used a median embedding due
to its robustness to the outliers.

Stage 2. Channel-level embeddings clustering. In the sec-
ond stage of filtration we consider whole channel and stack all
video-level median cluster embeddings into one array and per-
form clustering with the same algorithm and parameters as de-
scribed in Stage 1. We then choose the largest channel-level
cluster by tracing back video-level clusters sizes and summing
them up for each channel-level cluster. We declare the largest
channel-level cluster to be a cluster of a predominant speaker.

Stage 3. Segments selection. Finally, we perform segments
selection by tracing down the timestamps of video-level em-
beddings that belong to the largest channel-level cluster.

4. Experiments
To evaluate the impact of the VoxTube dataset on speaker recog-
nition task we have run a couple of experiments using Convolu-
tional Neural Network architecture ResNet [18].

4.1. Architecture

We conducted our experiments based on the ResNet48 architec-
ture, which is a modification of ResNet34 [14]. Details of the
architecture are presented in Table 2.

4.2. Data augmentation

As sources of augmentation we used the MUSAN [19], DE-
MAND [20] and DCASE [21] noise datasets and a database of
real room impulse responses (RIRs) [22]. The following 5 types
of noise augmentations were applied on-the-fly during the train-
ing:
• Music: A single music file was randomly picked from the

MUSAN and summed with the original audio with 5-15 dB
SNR. The duration of noise was matched against the duration
of a training utterance.

• Noise: Randomly selected noise file from MUSAN was
added to the original recording with 0-15 dB SNR.

• Babble: Between three and seven utterances of unique speak-
ers were randomly picked from MUSAN, summed together,
and then added to the original signal with 10-20 dB SNR.

• DEMAND: Randomly picked noise file from the DEMAND
was summed with the training utterance with 0-15 dB SNR.

• DCASE: Randomly picked noise file from the DCASE was
summed with the training utterance with 0-15 dB SNR.

Table 2: ResNet48 architecture

Layer name Output (C × F × T) Structure
Conv2D C × 80 × T 96, 3×3, stride=1

ResBlock-1 C × 80 × T
[
3× 3, 96
3× 3, 96

]
× 6

ResBlock-2 C × 40 × T/2
[
3× 3, 128
3× 3, 128

]
× 8

ResBlock-3 C × 20 × T/4
[
3× 3, 160
3× 3, 160

]
× 6

ResBlock-4 C × 10 × T/8
[
3× 3, 256
3× 3, 256

]
× 3

Flatten (C, F) 2560 × T/8 -
StatsPooling 5120 -

Dense 256 -
AM-Softmax Num. of speakers -

We also applied a 30% probability to reverberate each train-
ing sample via convolution with a randomly picked response
from RIRs.

4.3. Implementation details

4.3.1. Input features

As input, we used 80-dimensional Mel filter bank log-energies
with a 25 ms frame length and 10 ms step with 512 FFT size
over the 20-7600 Hz frequency range. When testing the models,
the 8-second input segments were used.

4.3.2. Loss function

As a loss function we used an Additive Margin Softmax (AM-
Softmax) loss [23]. This loss function reduces an interclass
variance via the margin penalty that is applied to the target class
logit. We used the scale 40 and the maximum value of margin
was set to 0.3 according to [14].

4.3.3. Training

We trained the speaker recognition models using a batch size of
512 and 30 training epochs, with each epoch consisting of 5000
steps. For each batch, we sampled 512 unique speakers and took
a single utterance for each speaker. From each utterance in the
batch, we randomly cropped a 2-second audio segment. During
training, we adjusted the learning rate and a margin in the AM-
Softmax loss function. The learning rate scheduler had three
phases: warmup, plateau, and decay. In the warmup phase, the
learning rate was linearly increased from 1e-5 to 0.1, while the
margin was set to 0 for the first two epochs. In the plateau
phase, the learning rate was fixed at 0.1 and the margin was
linearly increased from 0 to 0.3 for the next six epochs. Once
the margin reached its maximum value, the learning rate was
decreased exponentially with a rate of 0.5 every two epochs in
the decay phase. We also applied L2-norm regularization with
1e-4 coefficient to all model weights.

For the joined training on both datasets VoxCeleb2 and
VoxTube we increased the number of epochs and slightly
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Figure 2: VoxTube language and gender distributions

Table 3: Testing results for ResNet48 trained with VoxTube and VoxCeleb2

Train data VoxCeleb1-test LibriSpeech-test SdSV21-dev FFSVC20-dev
EER[%] DCF0.01 EER[%] DCF0.01 EER[%] DCF0.01 EER[%] DCF0.01

VoxCeleb2 1.36 0.128 1.24 0.080 3.12 0.212 7.68 0.687
VoxTube 2.68 0.264 1.40 0.080 2.46 0.213 6.97 0.676
VoxCeleb2 + VoxTube 1.46 0.134 1.17 0.059 2.39 0.201 6.38 0.607

changed the length of each phase: the warmup phase was
extended to 3 epochs, the plateau phase was extended to 10
epochs, and we dropped learning rate each 4 epochs during the
decay phase.

4.4. Evaluation

We evaluated our models' performance in various languages
and environments. As testing datasets, we used several text-
independent datasets from recent competitions. We provide a
brief description of each dataset below:

• VoxCeleb1-test [12]: This is a widely known speaker verifi-
cation multilingual test set. We used a test subset consisting
of 40 speakers.

• LibriSpeech-test [15]: Audiobooks-based dataset of English
language speech. We used a test-clean subset with 40 speak-
ers and 5.4 hours of speech.

• SdSV21-dev Task 2 [24]: This dev set contains two lan-
guages - Persian and English. Enrollments are always ut-
terances in Farsi, and the test utterance can be either in Farsi
or English. Also, enrollment models have a large variance in
the number of utterances: from 2 to 20. For evaluation we
used only text-independent Task 2 development part.

• FFSVC20-dev Track 2 [25]: This is a large dataset in Chi-
nese Mandarin. It was recorded on several devices (phone
and microphone arrays) located at different distances from
0.25 to 5 meters in parallel. For evaluation, we used text-
independent Track 2 development part.

We used a cosine similarity backend for embeddings scor-
ing. All test utterances shorter than 8 seconds were supple-
mented using the repetition of the source signal, and for the
longer utterances we extracted multiple windows (without over-
lap) and then averaged embeddings within the utterance. We
computed a cosine similarity score between a pair of enroll-
ment and verification speaker models. In the case when there

are more than one utterance in the speaker enrollment model,
we firstly averaged embeddings within the enrollment model,
before calculating the cosine similarity. Evaluation of systems'
performance is done using the Equal Error Rate (EER) and a
minimum Detection Cost Function with PTarget = 0.01.

5. Results
Our testing results are presented in Table 3. For each of three
experiments, we utilized the same ResNet48 model architecture
with different training data: VoxCeleb2 only, VoxTube only, and
our third experiment included both datasets. As we can see, the
model trained on VoxTube data provides better metrics for non-
English language benchmarks compared to VoxCeleb2 training.
We can also see that VoxTube domain is not highly correlated
with a domain of VoxCeleb2 since the VoxCeleb1-test results
are much better for the VoxCeleb2 training. In general, we
can say that the VoxTube dataset provides high overall gener-
alization ability across many testing domains. When VoxTube
is combined together with the VoxCeleb2 dataset we get a 20-
30% performance boost in most testing domains compared to
VoxCeleb2 or VoxTube training only.

6. Conclusions
In this paper we introduced a new language-wide text-
independent speaker recognition dataset VoxTube and its im-
pact on various open-source benchmarks. We have demon-
strated our underlying data collection and filtering approach
that is based on audio segments clustering. We have shown
that the VoxTube dataset complements well the existing and
non-overlapping dataset VoxCeleb2 and can steadily improve
the performance across the broad range of testing domains.
We hope this new training dataset will be adopted, alongside
the VoxCeleb2, as a baseline in the speech processing research
community to train the models on.
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