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Abstract
Classic non-blind speech dereverberation methods produce high-
quality results only when the precise impulse response is known.
Alternatively, learning-based blind methods cannot ensure ad-
equate dereverberation in all environments. We propose an
environment- and speaker-specific approach combining the ad-
vantages of both approaches. With a simple, one-time personal-
ization step, our model generalizes a single measured impulse
response to its spatial neighborhood. Specifically, the two-stage
model performs feature-based Wiener deconvolution followed
by a network-based refinement. Extensive experimental results
indicate that our approach quantitatively and qualitatively out-
performs the state-of-the-art methods. Additional user studies
confirm that our method is overwhelmingly favored by listeners.
Index Terms: speech enhancement, speech dereverberation,
neural networks

1. Introduction
Reverberation or echo in recorded audio depends on the acous-
tics of the environment and the locations of the audio source
and microphone within that environment [1]. This interplay
is described by the room impulse response (RIR) [2]. When
a reverberant audio recorded in one environment is played in
another, the listener in the second environment may perceive
the original audio as “out of place”. However, if the remote
audio were lacking reverberations or were dereverberated, then
the listener would perceive the audio source as in situ. Hence,
dereverberation can make applications like video conferencing
acoustically intimate.

Dereverberation is a long-studied problem. Given an au-
dio source signal x, the reverberant signal y received by the
microphone can be modeled as,

y = x ∗ h+ n, (1)

where h is the RIR between the source and the microphone, n is
additive noise. Dereverberation aims to recover the clean signal
x from the contaminated signal y.

When the precise RIR is known, classical methods like
Wiener deconvolution [3] can remove the reverberation in the
audio. However, during an online meeting, the user may move
around leading to varying RIR. Even these small variations in
RIR can compromise the performance of classical methods. Fur-
thermore, it is impractical to measure RIR for all possible user
locations. Hence, blind dereverberation methods [4–8] have been
popular. Among them, the weighted prediction error (WPE) algo-
rithm [9] is a well-established approach that iteratively estimates
a filter to predict the current reverberation tail at each time frame.
It is well-known that WPE can suppress late reverberations to
a large extent. As a result, many extensions to WPE have been

proposed [10–12], even those that combine WPE with learning-
based methods [13, 14].

With the advancement of machine learning, network-based
dereverberation methods [15–22] have achieved even better re-
sults. Unfortunately, despite the vast quantity of training data
available today, these techniques are still limited in their ability
to generalize to the enormous space of possible RIRs. We invite
the reader to listen 1 to examples of existing dereverberation
methods that reveal not only the persistence of some reverbera-
tion but also the muffling of higher frequencies.

In this paper, we focus on dereverberation from the perspec-
tive of online communication in common spaces such as offices,
conference rooms, and lecture halls. We assume the users are in
front of a computer (laptop, desktop, or video conference system)
with a microphone and loudspeaker. Typically, two —the envi-
ronment and the microphone—of the three factors that impact
the RIR are relatively fixed, with the location of the user having
the greatest impact on the RIR. We use this observation to design
a simple, one-time personalization procedure. We measure the
RIR for a single location of the user and then have them read a
brief passage while moving within the space they are expected
to occupy. Leveraging this data, we perform dereverberation by
combing Wiener deconvolution and deep learning. This empow-
ers our method to generalize the single RIR to the user’s entire
workspace. We suggest the reader to evaluate the quality of
our results and comparisons with previous work which are
included here: https://dereverb.github.io.

2. Method
We first describe the personalization step, in which we measure
a single representative RIR and capture a few minutes of re-
verberant audio along with its corresponding clean audio. We
then describe our dereverberation method that generalizes the
representative RIR to the spatial neighborhood.

2.1. Representative RIR

Let the user stand roughly at the center of the space within which
they would conduct online communication. The representative
RIR (rRIR) is the RIR from the user at this location, denoted by
Puser, to the location of the microphone (env-mic), denoted by
Penv-mic. The typical method to measure RIRs requires the audio
source to emit a sine-sweep and record it using the microphone.
Please note that we choose the sine-sweep method (ESS) over the
Maximum Length Sequence (MLS) because of its robustness as
described in [23, 24]. However, emitting a sine-sweep is beyond
human capability. Thus, we exploit the reciprocity of RIR.

Let RIR(Puser |Penv-mic) be the RIR from the user to
env-mic. According to acoustic reciprocity, the RIR be-
tween a source and a receiver remains the same if the two are

1https://dereverb.github.io
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Figure 1: The personalization step. (a) The user wears a
head-worn microphone user-mic and stands approximately
at the center of the usage region. The computer’s loudspeaker
emits a sine-sweep signal received by both user-mic and
env-mic. The representative RIR (rRIR) is calculated from
the signals captured by the two microphones. (b) The user then
moves around the region while reading a brief passage, which is
recorded by both microphones.

swapped [25–27]. That is,

RIR(Puser |Penv-mic) = RIR(Penv-mic |Puser). (2)

We require the user to wear a head-worn microphone
(user-mic) during this phase as shown in Figure 1. Further-
more, we assume that the loudspeaker on the computer is roughly
co-located with the env-mic. Then,

RIR(Puser |Penv-mic) ≈ RIR(Pls |Puser-mic), (3)

where Pls is the location of the loudspeaker and Puser-mic is the
location of the user-mic.

We now emit a sine-sweep over the loudspeaker and record
it simultaneously by both the env-mic and the user-mic.
rRIR is then calculated using the method described in [23]. In
our implementation, the sine-sweep frequency ranges from 70
Hz to 20 kHz and is repeated three times for 2 seconds each.

While rRIR is accurate for the measured location, it can be
an imprecise substitute for the spatial neighborhood.

2.2. Personalization

Since we cannot measure the RIR at every spatial location,
we instead capture the effects of the spatially varying RIR.
We ask the user to read a brief passage for five minutes
while freely moving within the vicinity. We record the user’s
voice using both the env-mic and the user-mic. The au-
dio recorded by env-mic has reverberations while the audio
recorded by user-mic is treated as clean audio as its signal-
to-reverberation ratio is very high.

2.3. Wiener Meets Deep Learning

Recall the reverberation model in Equation 1. If the precise
RIR h and approximate noise characteristics are known, Wiener
deconvolution [3] estimates the dereverberated signal x̂ as,

x̂ = w ∗ y, (4)

where w is the Wiener filter. For practical reasons, this is usually
computed in the frequency domain as,

X̂ = WY, W =
H∗

|H|2 + NSR
, (5)

where X̂ , W , Y , and H are the Fourier transforms of x̂, w, y,
and h, respectively, and H∗ is the complex conjugate of H . NSR
is the expected noise-to-signal ratio, usually set empirically.

However, rRIR is only measured at one user location and
cannot be generalized to the spatial neighborhood. Performing
the naı̈ve Wiener deconvolution of audio captured in the vicinity
of rRIR leads to a substantial and irrecoverable loss in speech
information. 2

The data captured during personalization contains implicit
information about how the RIR varies spatially. Leveraging this
insight, our proposed dereverberation technique combines the
advantages of both the Wiener filter and neural networks in a
GAN framework [28]. Figure 2 illustrates our proposed model.

Our proposed generator G accepts a reverberant signal y and
rRIR ĥ as inputs, extracts features of y in a high-dimensional la-
tent space (feature extraction,ϕ), performs feature-based Wiener
deconvolution (deep Wiener, ω), and finally refines and projects
features back to a 1-dimensional signal (refinement, ψ).
Feature extraction, ϕ: ϕ takes a reverberant signal y as in-
put, learns to extract useful features, and projects them to an
n-dimensional latent space (n = 32 in our implementation),
formulated as,

ϕ(y) =
{
ϕ(y)i

}n

i=1
: R1 → Rn. (6)

Intuitively, we seek to extract representations of the audio
signal that explicitly support Wiener deconvolution using rRIR
ĥ, but also generalize to the spatial neighborhood.

This module consists of one Conv1d layer (kernel size k =
15, stride s = 1 and padding p = 7) with ReLU followed by
two residual blocks (k = 15, s = 1 and p = 7).
Deep Wiener, ω: Partially inspired by [29], we propose
our feature-based deep Wiener operation, which is analogous
to Equation 4, as,

ω(y, ĥ) = ŵ ∗ ϕ(y)i, ∀i = 1, . . . , n. (7)

Here we perform channel-wise Wiener deconvolution with
ϕ(y)i, each of the n extracted features of y, and ŵ, the Wiener
filter obtained by utilizing ĥ, the imprecise rRIR. In frequency
domain, ŵ can be written as,

Ŵ =
Ĥ∗

|Ĥ|2 + NSR
, (8)

where Ĥ is the Fourier transform of ĥ. We use NSR = 0.1
regardless of the noise level of the reverberant signal.

In short, this module deconvolves the input reverberant sig-
nal with rRIR, aiming to remove most of the reverberation
existing in the signal. Since (1) rRIR is not the exact RIR used
to generate the input signal, and (2) NSR is set at a fixed value,
this process leads to residual reverberations and artifacts, which
are handled by the refinement module.

Refinement, ψ: Now that we obtain ω(y, ĥ), we perform a
refinement process that enhances the signal in the latent space
and then projects back to a 1-dimensional audio signal as,

ψ
(
ω(y, ĥ)

)
= x̂. (9)

Specifically, ψ is a U-Net-based multi-layer convolutional
encoder and decoder with skip connections. The encoder gets
as input the 32-dimensional signal from the previous module

2Please listen to the dereverberation results using naı̈ve Wiener.
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Figure 2: Proposed dereverberation network. The generator G(y, ĥ) accepts both a reverberant signal and an approximate RIR to
perform feature-based Wiener deconvolution, which is then enhanced by the refinement module for removing any remaining noises and
artifacts. The discriminator D contains a multi-scale discriminator Ds, and a multi-period discriminator Dp.

and outputs its latent representation. Each of the 5 layers of the
encoder consists of a Conv1d layer (k = 8, s = 4) followed
by ReLU, another Conv1d layer (k = 1, s = 1), and finally
a GLU activation. Then the latent representation is fed into
a unidirectional LSTM network with 2 layers followed by a
linear layer. Finally, the 5-layer decoder network outputs the
dereverberated signal. Each decoder layer consists of a Conv1d
layer (k = 1, s = 1) followed by a GLU activation, another
Conv1d layer (k = 8, s = 4), and finally a ReLU function.

In summary, the proposed generator G described above and
shown in Figure 2 can be mathematically described as,

x̂ = G(y, ĥ)

= ψ
(
ω(y, ĥ)

)

= ψ

[(
ŵ ∗ ϕ(y)i

)n

i=1

]
.

(10)

Discriminators, D: The discriminator module essentially eval-
uates whether the generated audio has reverberation or not. We
use the multi-scale discriminator proposed in MelGAN [30],
which evaluates audio samples at different scales. In our work,
the discriminator operates at three scales: audio down-sampled
by a factor of 1, 2, and 4. We also leverage the multi-period dis-
criminator proposed in HiFi-GAN [31], which evaluates audio
based on implicit structures at different periodic segments. As
suggested by the paper, we set the periods to [2, 3, 5, 7, 11].

Training Objectives: The objectives for our GAN model are:

LG = LGAN (G,D) + λFMLFM (G,D)

+ λMELLMEL(D),
(11)

LD = LGAN (D,G), (12)

where LGAN (G,D) and LGAN (D,G) are the standard GAN
losses [28].

The feature matching loss, LFM (G,D), is a similarity met-
ric between the clean and generated signals, defined as,

LFM (G,D) =
T∑

i=1

1

Ni
∥D(i)(x̂)−D(i)(G(y, ĥ))∥1, (13)

where D(i) denotes the i-th layer feature map output of the
discriminator; T is the number of layers in the discriminator; Ni

denotes the number of features in the i-th layer.

The Mel-spectrogram loss, LMEL(G), compares the spec-
trogram of the clean signal with that of the generated signal.

LMEL(G) = ∥δ(x̂)− δ(G(y, ĥ))∥1, (14)

where δ is the function that transforms a waveform to a Mel-
spectrogram. This ensures that the generator produces realistic
audio signals that match the clean ones across all frequencies.

3. Implementation
As described in Section 2.3, our model accepts as inputs a re-
verberant speech signal y, and an imprecise RIR captured in the
vicinity of the speaker, ĥ. Both are in the waveform domain
sampled at 16 kHz. The length of y is at least as long as h.
To train the model in a supervised manner, we need a clean
(noise and reverberation-free) copy of the reverberant signal. We
take a two-stage approach to train the model: (1) pre-train with
synthetic data and (2) fine-tune with personalization data.

Pre-training with Synthetic Data: We construct a large syn-
thetic dataset using publicly available datasets with the following
steps: (1) We randomly select 21,600 1-second speech clips
(sampled at 16 kHz) for a total duration of 6 hours from Lib-
riSpeech [32] as clean audio signals, of which 18,000 are sam-
pled from LibriSpeech’s training set and used to build our train-
ing set, and 3,600 are sampled from LibriSpeech’s test set for
testing. (2) RIRs (1-second long at 16 kHz) are sampled from
the Aachen Impulse Response (AIR) dataset [33]. This dataset
consists of real-world RIRs measured in various environments,
such as a booth, office, meeting room, etc., with the reverberation
time RT60 ranging from 0.08s to 0.83s. We split the dataset
by environments so that the set of environments for testing is
different from the set for training. For each environment, AIR
provides multiple RIRs measured at different locations in close
proximity, from which we randomly select two different RIRs –
one to construct a synthetic reverberant signal and the other to
use as the corresponding rRIR. Such RIR pairs are sampled for
each of the 21,600 speech clips. (3) We also add background
noises randomly chosen from the BUT Reverb dataset [34] (also
at 16 kHz) with an SNR between 10 dB and 30 dB. As a result,
we obtain 21,600 pairs of reverberant signals and rRIRs for
training and testing without any overlap.

Pre-training using such a large synthetic dataset enables
the model to generalize the input rRIR to its vicinity and treat
dereverberation as a general problem.

Fine-tuning with Personalization Data: After pre-training
with the synthetic data, we fine-tune (personalize) our network
per user, per environment using user- and environment-specific
reverberant signals and RIRs. We follow the steps below to get
training data: (1) One rRIR is measured following the procedure
in Section 2.1. This is used for both the training and testing
tasks. (2) We collect a pair of the reverberant signal (recorded
by the env-mic) and its corresponding clean signal (recorded
by the user-mic) for each user within each environment for
about 5 minutes (described in Section 2.2). (3) We collect an
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Table 1: Ablation studies: This table brings forth the impact
of each network component. When Wiener deconvolution is dis-
abled, the method reduces to blind dereverberation and quality
suffers. When Wiener is enabled, but refinement is disabled, the
quality jumps thereby proving the importance of Wiener deconvo-
lution. We get the best quality when both are enabled. Evaluated
on synthetic data.

Wiener Refinement PESQ ↑ STOI ↑ SRMR ↑
× ✓ 2.17 0.90 6.63
✓ × 2.10 0.89 7.38
✓ ✓ 2.40 0.92 7.56

Table 2: Robustness to location variation: The dereverberation
quality is optimal when the user is near the location of the
measured rRIR. The quality degrades gracefully as the user
moves further away. Evaluated on synthetic data.

Distance PESQ ↑ STOI ↑ SRMR ↑
0m 2.21 0.92 8.78
1m 2.12 0.90 8.37
2m 2.00 0.89 8.09
3m 1.74 0.83 7.06

additional 3 minutes of data for testing and reporting metrics.
Please note that since the user is moving around during this step,
the underlying RIR for the captured speech keeps varying and
does not match the rRIR captured above. The user also reads
different text excerpts during fine-tuning and testing and ensures
that the network never encounters testing data during the
training phase of the personalization step. Once the network
has been fine-tuned with this data, the user no longer needs to
wear the user-mic, and only the env-mic is used. With this
one-time personalization process, our method is able to learn the
implicit acoustic information of the user’s voice and environment
and produce high-quality dereverberation results when speaking.

In addition, to ensure data diversity for method comparison,
we have recorded 4 individuals—two males and two females, na-
tive and non-native speakers—in 5 distinct environments, includ-
ing a conference room, a tiled kitchen, a wood-floored bedroom,
a glass-walled office, and a carpeted study room. Therefore, we
have obtained 3× 4× 5 = 60 minutes of real-world audio for
method evaluation. Results are shown in Table 3.

4. Evaluation
We use the following widely used metrics to evaluate the quality
of dereverberated audio. i) Perceptual Evaluation of Speech
Quality (PESQ) [35], ii) Short-Time Objective Intelligibility
(STOI) [36], and iii) Speech-to-Reverberation Modulation En-
ergy Ratio (SRMR) [37].

4.1. Quantitative Evaluations

Table 3 provides the comparative evaluation of our method
with classical/learning-based and blind/non-blind dereverber-
ation methods. We report metrics for both synthetic and real
data. To ensure a fair comparison, we fine-tune all learning-
based methods with the recordings from the personalization step.
For non-blind methods, the input rRIR from the personalization
step is used. As highlighted, our method consistently outper-
forms other approaches for all the metrics. Specifically, based

Table 3: Comparisons on synthetic/real dataset. Our method
yields the highest quality, most intelligible and least reverberant
audio.

Method Blind ML PESQ ↑ STOI ↑ SRMR ↑
Recorded - - 1.8 / 1.6 0.9 / 0.7 6.9 / 4.3

Wiener [3] 1.3 / 1.6 0.8 / 0.7 4.7 / 4.6
WPE [4] ✓ 1.9 / 1.7 0.9 / 0.7 7.4 / 5.9

Demucs [18] ✓ ✓ 1.5 / 1.0 0.9 / 0.6 7.3 / 4.7
HiFi-GAN [19] ✓ ✓ 2.1 / 1.7 0.9 / 0.8 7.4 / 6.5
Ours ✓ 2.4 / 2.1 0.9 / 0.9 7.6 / 8.5

Clean - - 4.6 / 4.6 1.0 / 1.0 8.0 / 8.6

54 45
Ours 54 45 Wiener
Ours 53 43 WPE
Ours 53 44 Demucs
Ours 50 42 HiFi-GAN
Ours 24 18 Clean

Not Ours
Ours 1 0% 100% Wiener
Ours 2 3% 97% WPE
Ours 3 2% 98% Demucs
Ours 4 7% 93% HiFi-GAN
Ours 5 58% 42% Clean

0%

3%

2%
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Figure 3: User study results. We conduct a preference test
between the dereverberation results of our method and those of
the comparison techniques. Untrained listeners overwhelmingly
favor our results. Even when compared to clean speech, our
results are preferred nearly half of the time.

on SRMR scores, our method yields the least amount of remnant
reverberation. Our method outperforms all other methods by
an even greater margin on real-world data, demonstrating its
robustness and practicality.

4.2. Qualitative User Study

We conduct a user study to evaluate the perceptual quality of
our method with untrained listeners. We randomly choose three
clips from our dataset of real recordings and create pairs of
results. Each pair contains audio processed by our method and
by one of the comparison methods. Additionally, we create pairs
of our result and the corresponding clean audio. In total, we
create 15 pairs and invite 33 participants, including 18 male
and 15 female, to choose a preferred audio within each pair
in a blind study analogous to [19]. As shown in Figure 3 the
listeners unambiguously favor the results from our method. It is
also noteworthy that, compared to clean speech, our method is
preferred nearly half of the time. This indicates that our method
produces results that are generally perceived as clean as the
original signals. We invite the reader to listen to our results
here: https://dereverb.github.io.

5. Discussion
While our method produces state-of-the-art dereverberation re-
sults, we believe certain improvements can make it a practical
go-to method. For online communications, real-time causal pro-
cessing of audio is critical. Using a sliding window approach,
our current implementation can run in real-time but is not com-
putationally efficient on low-end laptops. Another drawback
is that the method is speaker-specific. A speaker-independent
fine-tuning will make our system more widely applicable. We
intend to address these in the future.
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