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Abstract
Voice conversion (VC) seeks to modify one speaker’s voice to
generate speech as if it came from another speaker. It is chal-
lenging especially when source and target speakers are unseen
during training (zero-shot VC). Recent work in this area made
progress with disentanglement methods that separate utterance
content and speaker characteristics from speech audio record-
ings. However, these models either lack adequate disentangle-
ment ability or rely on the use of a trained vocoder to reconstruct
the speech from acoustic features. We propose Flow-VAE VC,
which is an end-to-end system processing directly on the raw
audio waveform for zero-shot tasks. Flow-VAE VC adopts a
conditional Variational Autoencoder (VAE) with normalizing
flows and an adversarial training process to improve the ex-
pressive power of generative modeling. Specifically, we learn
context-invariant representations by applying frame-level con-
trastive loss to speech different augment samples. The experi-
ments show that the proposed method achieves a decent perfor-
mance on zero-shot voice conversion and significantly improves
converted speech naturalness and speaker similarity. Readers
can get the source code and listen to some audio samples on the
demo webpage1.
Index Terms: Voice conversion, VAE, Flow, End-to-end, Zero-
shot.

1. Introduction
Voice conversion(VC) aims to change the timbre of one speaker
(source speaker) so that it sounds like the timbre of another
person (target speaker) while keeping the linguistic content un-
changed. It is widely applied in many fields such as entertain-
ment, creative industry, education and healthcare.

According to the training paradigms, there are two major
types of methods for VC: parallel and non-parallel [1]. Parallel
VC methods trained on parallel data [2] or text transcriptions [3]
produce convincing results. Although a VC system with good
sound quality can be obtained by training in a supervised way
through parallel data, it is often infeasible in practice to collect
a large parallel corpus and align the time between the source
speech and the target speech. Therefore, non-parallel VC meth-
ods solve this problem by learning unlabeled or non-parallel
data. Because direct feature mapping method is difficult, a
common way to achieve non-parallel VC is disentangling the
linguistic and non-linguistic information carried by the source
and target utterances, respectively, and training a neural net-
work as a decoder to reconstruct the acoustic feature, with the
assumption that the decoder can also generalize well when the

* Equal contribution.
1https://frostmiku.github.io/Flow-VAE-VC/

linguistic and the non-linguistic information is swapped during
the conversion. Various approaches such as generative adver-
sarial network (GAN) based VC [4, 5, 6, 7], variational autoen-
coder (VAE) based VC [8, 9, 10], and automatic speech recog-
nition (ASR) based VC [11] have been proposed. However, all
the methods above can only be used to convert between the lim-
ited speakers which are seen in the training dataset.

Recently, zero-shot VC approaches are proposed, which fo-
cus on the conversion between the speakers who are unseen in
the training dataset. Some approaches such as Auto-vc [12],
FragmentVC [13] and VQMIVC [14] employ encoder-decoder
frameworks for zero-shot VC, the encoder disentangles the
speaking style and content information into the latent embed-
ding, and the decoder generates acoustic features which pre-
defined intermediate (such as mel-spectrogram) by combining
both disentangled information. But their training, and inference
rely entirely on the output of unsupervised module, this will
mix with information other than the content information, and
the systems still have to rely on the use of a vocoder to recon-
struct the speech from acoustic features, as a consequence, the
speech quality heavily depends on a vocoder. To mitigate this
problem, a fully end-to-end VC model named NVC-Net [15]
which explicitly performs disentanglement for voice conversion
directly on the raw audio waveform, but it still lacks of explicit
controls over other aspects of speech, e.g., rhythm and prosody.
Blow [16] is a normalizing flow network for end-to-end vc on
raw audio signals, but it performs many-to-many VC.

Ren [17] observes that VAE is good at capturing the long-
range semantics features (e.g., prosody) even with small model
size but suffers from blurry and unnatural results; and normal-
izing flow is good at reconstructing the frequency bin-wise de-
tails but performs poorly when the number of model parameters
is limited. Inspired by VITS [18], which outperforms the best
publicly available TTS systems, we explore a conditional VAE
with normalizing flows for VC. In this work, we present an end-
to-end system named Flow-VAE VC for zero-shot tasks, Flow-
VAE VC adopts a conditional VAE with normalizing flows and
an adversarial training process. To obtain a better content rep-
resentation, we combine the frame-level contrastive loss with
information perturbation method which is from NANSY [19].
The main contributions of this paper are three folds as follows:

• Flow-VAE VC is an end-to-end system that does not require
parallel data, it performs disentanglement for voice conver-
sion directly on the raw audio waveform and generates raw
audio without training an additional vocoder.

• Flow-VAE VC uses the frame-level contrastive loss to speech
different augment sample, which can successfully disentan-
gle linguistic content and speaker characteristic.

• Flow-VAE VC addresses the zero-shot VC problem.
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Figure 1: The architecture of Flow-VAE VC. (a) Latent variables z from the content encoder. (b) Overview training procedure. (c)
Voice conversion from the source speaker utterance to target speaker timbre in the inference stage.

2. Method
2.1. Model Architecture

We describe the main components of Flow-VAE VC, Figure 1
(b) shows an overview of the architecture. The system consists
of three components: 1) a content encoder extracts the latent
conditional distribution, which is a conditions content represen-
tation extracted from the ResNet [20] with contrastive loss. 2) a
posterior utterance encoder extracts the latent distribution from
the dataset. 3) a decoder that reconstructs the utterance y from
z, where z is a sample of the latent distribution.

2.1.1. ELBO

Flow-VAE VC is a conditional VAE model. The optimiza-
tion objective of the variational autoencoder is to maximize the
variational lower bound, which can also be called the evidence
lower bound (ELBO) [21].

log pθ(x|c) ≥ Eqϕ(z|x)

[
log pθ(x|z)− log

qϕ(z|x)
pθ(z|c)

]
(1)

where pθ(z|c) denotes a content distribution of the latent vari-
ables z given condition c, pθ(x|z) is the likelihood function
of a data point x, and qϕ(z|x) is an approximate posterior
distribution. Maximizing EBLO is equivalent to maximizing
Eqϕ(z|x) [log pθ(x|z)] and minimizing DKL(qϕ(z|x)|pθ(z|c))
also can be called construct loss and KL divergence, respec-
tively.

2.1.2. Content encoder

Specifically, as shown in Figure 1 (a), the content encoder is
constructed by transformer, which produces the mean and vari-
ance from c used for constructing the content distribution z,
where c is encoded from the content extractor. To obtain a con-
tent representation c, we combine the information perturbation
method from NANSY [19] with frame-level contrastive loss. It
is mainly based on the fact that this perturbation method only al-
ters the speaker identity of the utterance with minimal changes
in the other aspects. Therefore, we designed the frame-level

contrastive loss to encourage the model to learn the content rep-
resentation that is invariant in the source and perturbation to
achieve disentanglement of content.

The information perturbation method consists of three com-
ponents. 1) formant shifting with scaling factor ρ1. 2) pitch
randomization with scaling factor ρ2. 3) a parametric equalizer
is used for random frequency shaping. ρ1 and ρ2 is sampled
uniformly from U(1, 1.4), and then flipped to their reciprocals
with probability of 0.5.

After perturbation, the linear spectrogram of utterance x
and its perturbed copy x̂ are projected to the embedding space
through a pair of content extractors consisting of ResNet with
shared weights. To further compute the contrastive loss, we use
a Conv1D which out-channels and bias are set to 1 and false
respectively to map them to the content code c and ĉ.

We define the frame-level contrastive loss as:

Lctr = −
T∑

i=0

log [Ctr(i, c, ĉ) + Ctr(i, ĉ, c)] (2)

where T denotes the number of frames in the content code c and
i denote the frame index. Ctr(. . . ) is defined as:

Ctr(t, c, ĉ) =
exp(d(ct, ĉt))∑

n∈(c\ct)∪(ĉ\ĉt) exp(d(ct, n))
(3)

where n denotes the frame from a moment other than t as neg-
ative samples, d(ct, ĉt) denotes calculate the distance between
c and ĉ at frame t. In this work, we use the cosine angle as
a distance metric. To further improve performance, we choose
to feed the perturbed copy embedding into the transformer to
produce the content distribution. As [18], we apply a normal-
izing flow fθ [22] to convert a simple distribution into a more
complex distribution. The normalizing flow is a stack of affine
coupling layers [23] consisting of a stack of WaveNet [24] resid-
ual blocks. we add speaker embedding to the residual blocks in
the normalizing flow through global conditioning. the whole of
which can be expressed as:

pθ(z|x̂) = N (fθ(z);µθ(x̂), σθ(x̂))

∣∣∣∣det
∂fθ(z)

∂z

∣∣∣∣ (4)
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2.1.3. Posterior encoder

The posterior encoder extracts the latent distribution from the
linear spectrogram. At the same time, the speaker embedding
is also added to the encoding part so that the hidden variable
space is more focused on encoding speaker-independent parts.
The whole can be expressed as qϕ(z|xlin, sid) where xlin is the
linear spectrogram and sid is the speaker embedding extracted
from the speaker encoder.

Thus the KL divergence in Eq.1 can be expressed as:

LKL = log qϕ (z | w)− log pθ (z | x̂)
z ∼ qϕ (z | w) = N (z;µϕ (w) , σϕ (w))

w = [xlin, sid]

(5)

2.1.4. Speaker encoder

In order to achieve any-to-any voice conversion, a robust
speaker representation model is essential. We use the pretrained
ECAPA-TDNN [25] model to extract the embedding vector sid
as the speaker representation, which is trained on Voxceleb1 and
Voxceleb2 training data. The pretrained model can be found at
Speechbrain [26].

2.1.5. Decoder

The decoder part is consistent with VITS, which is essentially
the generator for HiFi-GAN [27]. The decoder upsamples the
waveform y from the latent variable z. To achieve any-to-any
voice conversion, speaker embedding sid is also added to the
latent variable z. Then we transform the original waveform x
and y to the mel-spectrogram domain as xmel and ymel, and
use the L1 loss as the reconstructed loss in Eq.6:

Lrecon = |xmel − ymel|1 (6)

2.2. Adversarial training

In order to generate high-quality audio, we introduce adversar-
ial training, and add a discriminator D that distinguishes be-
tween the output generated by the decoder G and the ground
truth waveform x. And the additional feature matching loss [28]
for training the generator:

Ladv(D) = E(x,z)

[
(D(x)− 1)2 + (D(G(z)))2

]
(7)

Ladv(G) = Ez

[
(D(G(z))− 1)2

]
(8)

Lfm(G) = E(x,z)

[ T∑

l=1

1

Nl
||Dl(x)−Dl(G(z))||1

]
(9)

where T denotes the total number of layers in the discriminator
and Dl outputs the feature map of the l-th layer of the discrim-
inator with Nl number of features.

2.3. Overall objectives

The total loss for training Flow-VAE VC can be expressed as
follows:

L = Lrecon + LKL + Lctr + Ladv(G) + Lfm(G) (10)

2.4. Voice Conversion

In the inference phase, Figure 1 (c) shows the end-to-end voice
conversion model, we input the waveform of the target speaker
to the speaker encoder for obtaining the target speaker’s tim-
bre and then input a linear spectrogram of the source waveform
to the content encoder, and the output of the content encoder
is sent to the reversed flow module together with the target
speaker embedding, and its output is sent to the decoder. Fi-
nally, the Flow-VAE VC generates the voice waveform of the
target speaker’s timbre.

3. Experiments
3.1. Dataset

We conduct our experiment on the VCTK dataset[29], which
contains about 46 hours of audio from 109 native English speak-
ers with various accents, and there are about 500 sentences for
each speaker. The total length of the audio clips is approxi-
mately 44 hours. The audio format is 16-bit PCM with a sam-
ple rate of 44 kHz. We reduce the sample rate to 16 kHz and
selected 10 speakers as our testing set, where we denote them
as our unseen speakers.

3.2. Setup

We use linear spectrograms as input. For the content extractor,
we used 4 residual blocks, each consisting of 6 Conv1D layers.
We use 80 bands of mel-scale spectrograms for reconstruction
loss, which is obtained by applying a mel-filterbank to linear
spectrograms.

We use the AdamW optimizer [30] and set β1 = 0.8,
β2 = 0.99 and weight decay λ = 0.01. We use the Expo-
nential learning rate decay scheduler with a 0.999875 factor in
every epoch, where the initial learning rate is set to 0.0002. The
seed of the random number generator is set to 1234. We adopt
slice training, a method of using only a part of frames for cal-
culating Lmel and Lctr , to reduce training time and memory
usage during training. We use an NVIDIA V100 GPU with a
batch size of 32 and train for 4 days. For more model details of
Flow-VAE VC, the code was released on the demo webpage.

To validate our proposed method, we implement compari-
son and ablation systems. For comparison systems, we selected
three SOTA zero-shot VC methods, including FragmentVC
[13], VQMIVC [14] and NVC-Net [15]. To make fair com-
parisons, these models are retrained with the same dataset as
Flow-VAE VC. We have set four scenarios for the above sys-
tems, including seen2seen, seen2unseen, unseen2seen, and un-
seen2unseen, where seen2unseen means the source speaker is
seen during training and the target speaker isn’t. For ablation
analysis, we evaluate the effect of the frame-level contrastive
loss on the model, Flow-VAE VC w/o Ctr system is composed
of speaker and conversion module without applying frame-level
contrastive loss to speech different augment samples. Flow-
VAE VC is our final proposed system combining frame-level
contrastive loss.

3.3. Objective evaluation

We use the mel-cepstral distortion (MCD) [31] to measure
how close the converted is to the target speech, and test the
CER/WER of the converted speech to evaluate whether the con-
verted voice maintains linguistic content and intonation varia-
tions of the source voice. We use the Wenet [32] ASR system to
tested the CER and WER of converted audio. We randomly se-
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Table 1: Comparison of evaluated speaker similarity and speaker naturalness MOS on the VCTK dataset. “seen2seen” indicates
converting seen speakers to seen speakers, “unseen2seen” means converting unseen speakers to seen speakers, “seen2unseen” means
converting seen speakers to unseen speakers, and “unseen2unseen” means converting unseen speakers to unseen speakers.

Model FragmentVC VQMIVC NVC-NET Flow-VAE VC w/o Ctr Flow-VAE VC

Test Speech naturalness

seen2seen 2.96 3.36 3.71 3.87 4.27
unseen2seen 2.65 3.32 3.49 3.83 4.25
seen2unseen 2.48 3.29 3.45 3.80 4.17

unseen2unseen 2.10 3.19 3.35 3.76 4.09

overall 2.54 3.29 3.50 3.82 4.12

Test Speaker similarity

seen2seen 3.17 3.57 3.87 3.91 4.05
unseen2seen 3.01 3.55 3.75 3.87 4.01
seen2unseen 2.85 3.42 3.62 3.75 3.93

unseen2unseen 2.61 3.31 3.50 3.62 3.89

overall 2.91 3.46 3.69 3.79 3.97

lected 4 testing speakers from the testing set as source speakers,
and treated the remaining 4 testing speakers as target speakers.
The ASR and MCD results of the source speech and the con-
verted speech are shown in Table 2, where we treat the source
speech named GT as the topline of all tests. It can be seen that
Flow-VAE VC achieves the lowest CER and WER among all
methods, which shows the robustness of the proposed method
to preserve the source linguistic content. Meanwhile, we ob-
serve that the ASR performance of Flow-VAE VC without the
contrastive loss (w/o Ctr) is poor, as content information and
speaker timbre are not well decoupled. In addition, by pro-
viding MCD testing results, it can be seen that Flow-VAE VC
methods including without the contrastive loss system generate
audio is closer than others.

3.4. Subjective evaluation

For evaluation, we conducted Mean Opinion Score (MOS) tests
to evaluate the synthesized results in terms of converted speech
naturalness and speaker similarity. The listener needs to give a
score for each sample in a test case according to the criterion:
1 = Bad; 2 = Poor; 3 = Fair; 4 = Good; 5 = Excellent. In each
test scenario, We randomly select two source speakers and two
target speakers from the testing speakers, each source or target
set contains one male and one female speaker, which results in 4
conversion pairs, where 20 converted utterances from each pair
are evaluated by each subject. The scores are averaged across
all pairs and reported in Table 1.

Table 2: ASR and MCD results.

Methods CER(%) WER(%) MCD (dB)

GT 3.95 10.16 5.0091
FragmentVC 20.97 33.33 5.2138

VQMIVC 20.44 34.79 5.0773
NVC-NET 32.74 47.10 4.9635

Flow-VAE VC 19.55 30.62 4.5595
w/o Ctr 29.58 39.13 4.5288

Naturalness: As shown in Table 1, the results of natural-
ness of the converted speech, we can see that our method per-
forms better than the three baseline models in four scenarios,
which benefits from the expressive power of generative model-
ing of Flow-VAE VC. For ablation analysis, the MOS scores of
Flow-VAE VC is higher than the proposed model without the
contrastive loss in terms of naturalness, which shows the con-
trastive loss can disentangle speech representation accurately
represents linguistic content and then improve converted speech
naturalness.

Speaker Similarity: The results of speaker similarity of
the converted speech are shown in Table 1, We observe that
our method significantly outperforms the three baseline models
consistently, in terms of similarity, particularly when source and
target speakers are unseen during training. In the experiments
of Flow-VAE VC w/o Ctr vs. Flow-VAE VC in the zero-shot
voice conversion, the speaker similarity also decreases when the
target speaker is unseen, Flow-VAE VC performs better, from
our perspective, the contrastive loss can regularize the model to
approach an identity mapping when real samples of the target
speaker are provided. As the result, we confirm that applying
the frame-level contrastive loss is relatively important.

4. Conclusions

In this paper, we propose Flow-VAE VC for raw audio synthe-
sis and specially for the challenging task of zero-shot voice con-
version. Flow-VAE VC is an end-to-end system, which adopts a
VAE with normalizing flows and an adversarial training process
to improve the expressive power of generative modeling and in-
troduces the contrastive loss to the content encoder to enforce
the content representation to retain the phonetic structure of the
raw speech. Our evaluations showed good results in terms of
similarity to target speakers and speech naturalness. We note
that although Flow-VAE VC can convert voice with a high level
of naturalness, it still lacks control in prosody and needs pre-
trained model to extract the speaker embedding as conditional
input. In the future, we will focus on addressing prosody issue
and optimizing speaker encoder.
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