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Abstract

Speech processing techniques are useful for analyzing speech
and language development in children with Autism Spectrum
Disorder (ASD), who are often varied and delayed in acquiring
these skills. Early identification and intervention are crucial, but
traditional assessment methodologies such as caregiver reports
are not adequate for the requisite behavioral phenotyping. Nat-
ural Language Sample (NLS) analysis has gained attention as
a promising complement. Researchers have developed bench-
marks for spoken language capabilities in children with ASD,
obtainable through the analysis of NLS. This paper proposes
applications of speech processing technologies in support of au-
tomated assessment of children’s spoken language development
by classification between child and adult speech and between
speech and nonverbal vocalization in NLS, with respective F1
macro scores of 82.6% and 67.8%, underscoring the potential
for accurate and scalable tools for ASD research and clinical
use.
Index Terms: speech processing, self-supervised learning,
autism spectrum disorder, diagnosis

1. Introduction
Autism Spectrum Disorder (ASD) is a multifaceted neurobi-
ological developmental disorder that is characterized by im-
pairments in social communication and interactions along with
repetitive and restrictive behaviors and interests. In the USA,
1 in 44 children is reported to have ASD [1]. Children with
ASD typically experience significant delays in acquiring spo-
ken language capabilities, as reported by [2]. Timely and early
identification and intervention are crucial to address the impact
of ASD in children [3].

Speech and language assessments have traditionally relied
on standardized tests and parental reports. However, these
methods are known to be inaccurate or subjective in the context
of phenotyping, including language development in ASD [4].
An alternative approach that has gained attention for evaluating
ASD is the use of NLS, which refers to a recording of sponta-
neous expressive language collected in clinically-relevant con-
texts and settings. NLS provides rich information about an in-
dividual’s expressive language development in naturalistic set-
tings [5]. Language samples are available within established
clinical protocols for ASD diagnosis and treatment response
monitoring, such as Autism Diagnostic Observation Schedule
(ADOS) [6], a semi-structured assessment administered by a
trained examiner. More naturalistic language samples can be
collected remotely through recordings of child-parent dyadic
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Figure 1: Spoken language assessment pipeline

interactions at home [7]. The present study uses NLS data col-
lected from such a setting, as described in Section 3.

ASD researchers have developed benchmarks for assessing
spoken language abilities across the developmental trajectory
in children with ASD, which can be determined through the
analysis of NLS [8]. Continuous monitoring of children’s de-
velopment over time in spoken language abilities is beneficial
not only for diagnostic purposes but also for assessing progress
or response to treatment [9]. However, establishing spoken lan-
guage ability levels is both expensive and time-consuming, as
it requires expertise and manual inspection. Robust automated
audio-based measurements of spoken language capabilities sen-
sitive to developmental changes can expedite ASD research and
enhance clinical outcomes.

In this work, we propose applications of speech processing
methods toward automated assessment of clinically-meaningful
spoken language levels for young children with ASD. What
makes the task intrinsically challenging is that the vocal sig-
nals from these young children are not well-formed, sparse, and
highly variable. Indeed, the dataset we investigate in this work
consists mostly of non-verbal or minimally verbal children with
ASD. As a result, post speech processing techniques such as
speaker diarization and automatic speech recognition (ASR) are
not directly applicable or beneficial since these methods rely on
the presence of adequate amounts of linguistically well-formed
speech segments. On the other hand, voice activity detection
(VAD) and utterance classification methods alone turn out to
be critical processing steps toward automated spoken language
assessment with such target subjects.

Based on our observations from the dataset in the ASD
domain, we hypothesize that the amount of speech a child
produces is indicative of their spoken language levels. Thus,
we focus on the child speech extraction in the spoken lan-
guage assessment pipeline, as depicted in Figure 1. We pro-
pose to annotate spoken language segments using four tags:
intelligible speech, unintelligible speech, nonverbal vocaliza-
tions, and singing. We separate speech into intelligible speech
and unintelligible speech because speech intelligibly is signifi-
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Table 1: Summary of the pre-trained encoders used in this study.

Pre-trained
Architecture Input #Layers Hidden

Size #Params

W2V 2.0 Base Raw Wave 12 768 95.04M
WavLM Base+ Raw Wave 12 768 94.70M
Whisper Base Mel-Spec 8 512 20.59M

cantly impaired in minimally verbal individuals with ASD com-
pared to verbally fluent individuals with ASD, as noted in [10]
[10]. In addition, child/adult speaker segmentation is a cru-
cial step towards the ultimate goal of automated spoken lan-
guage assessment. Hence, this work focuses on classifying both
speaker roles (adult/child) and spoken language (e.g. intelligi-
ble speech). In summary, the main contributions of the paper
are listed below:

• Differing from previous literature in ASD studies that focuses
on speaker classification, we introduce an additional speech
and nonverbal vocalization classification task.

• Based on our novel classification objective, we propose a spo-
ken language annotation/labeling framework for automatic
analysis of spoken language capabilities targeting non-verbal
or minimally verbal children with ASD.

• We show the statistical significance of spoken language la-
bels toward our hypothesis through the ANOVA test, validat-
ing that both total utterance count and mean duration of in-
telligible speech utterances significantly differentiate spoken
language levels (p-value < .001).

• We perform the classification utilizing three popular pre-
trained speech models and report promising results in both
speaker classification (Best F1: 82.6%) and spoken language
classification (Best F1: 67.8%), demonstrating the potential
of extending the current framework for future studies in ASD.

2. Background

2.1. Speech Processing for ASD

Automated understanding of adult-child interactions supports
a variety of applications including child-centric possibilities in
support of diagnosis and treatment of developmental disorders
and health conditions [11, 12, 13]. The predominant symptoms
of ASD manifest as difficulties in language and non-verbal com-
prehension and expression, and differences in expressive vo-
cal prosody patterns. Thus computational analysis of interac-
tions involving children (e.g., using speech/non-speech detec-
tion followed by speaker diarization) can serve as a valuable
tool in supporting early diagnosis and intervention using vocal
audio data. Prior ASD works on automated speech process-
ing have focused on speaker diarization using spectral features
and i-vectors [14, 15, 16]. In more recent years, ASD studies
have started to investigate the use of deep neural representa-
tions to perform speaker diarization. For example, authors in
[17] demonstrated that x-vectors [18] contain more discrimina-
tive information to identify child speech utterances compared to
conventional approaches. Recently, [19, 20] have addressed the
challenges due to the within- and across-age and gender vari-
ability of children speech, by using a meta-learning and adver-
sarial learning strategy, respectively. In our work, we use more
recent state-of-the-art speech embedding models compared to
previous works, as described in the next sub-section.

Table 2: Details of the subset that was further annotated with
four labels based on the audio

Category Statistics

Age (month) Range: 50 - 95, Mean: 79, Std: 12.3
Gender 38 males, 7 females
Count per LL 14 (LL-1), 15 (LL-2), 16 (LL-3)
Number of Activities Range: 1 - 5, Mean: 1.9, Std: 1.1

2.2. Speech Embeddings

The introduction of transformers [21] has recently accelerated
the development of Self-Supervised Learning (SSL) techniques,
the aim of which is to learn general data representations with-
out labels. Notably, methods in speech processing such as
wav2vec 2.0 [22] and HuBERT [23] have emerged as effective
approaches for learning speech representations that generalize
to a variety of tasks, including phoneme classification, ASR and
speech emotion recognition. We use wav2vec 2.0 [22], WavLM
[24], and Whisper encoder [25] for our experiments.

Wav2vec 2.0 is a self-supervised model trained to predict
masked segments of quantized speech units, which are encoded
by convolutional layers. WavLM is a recently introduced self-
supervised model that improves on HuBERT, which uses of-
fline clustering to provide pseudo-labels for a masked speech
prediction task. WavLM extends HuBERT by optimizing the
model architecture and reformulating the reconstruction task as
a masked de-noising. It achieves state-of-the-art performance
on the SUPERB benchmark [26] for several downstream tasks.

Whisper is an ASR model with encoder-decoder trans-
former architecture trained on 680, 000 hours of diverse mul-
tilingual speech data collected from the web [25]. Since we are
interested in speech representations for our application and not
finetuning ASR, we extract the encoder outputs from Whisper
for our experiments.

3. Dataset
3.1. Dataset Details

In this work, we report findings using a sub-dataset from [7, 27],
consisting of 45 videos of 15-minute interactive sessions, each
involving children with autism and their parents. The data are
collected remotely, in an in-home setup, where parents are in-
structed to choose a set of pre-defined activities that would hold
their child’s attention. The activities consist of 13 categories,
such as games, conversations, cooking, and art. The details of
the participants are reported in Table 2. The video sessions are
first transcribed using Systematic Analysis of Language Tran-
scripts (SALT) [28]. Then, domain experts use SALT to cate-
gorize the spoken language level of each child into pre-verbal
communication, first words, and word combinations according
to [8]. For the remainder of the paper, we refer to pre-verbal
communication as spoken language level 1 (LL-1), first words
as spoken language level 2 (LL-2), and word combinations as
spoken language level 3 (LL-3) for simplicity.

3.2. Annotation Protocol

As noted in Section 1, we have annotated child and adult (par-
ent) speech segments using four tags: intelligible speech, unin-
telligible speech, nonverbal vocalizations, and singing. The an-
notator labels the intelligible/unintelligible speech based on the
correctness of a spoken utterance, such that a properly sounding
utterance belongs to the intelligible speech class. Meanwhile,
nonverbal vocalizations include laughter, gasping, yelling, and
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Table 3: mean ± std and ANOVA test results for utterances. C = Child and A = Adult.

Category Count Mean Duration (s)
LL-1 LL-2 LL-3 F (p-val) LL-1 LL-2 LL-3 F (p-val)

C - Intelligible 2.4± 3.8 38.1± 20.8 155± 54.0 77 (< .001) 0.5± 0.1 0.9± 0.2 1.2± 0.5 11 (< .001)
C - Unintelligible 3.7± 6.8 25.2± 14.3 23.6± 24.5 6.5 (.003) 0.7± 0.2 1.0± 0.3 1.0± 0.3 4.7 (.015)
C - Vocalization 64.6± 37.9 75.2± 57.4 48.8± 33.4 1.32 (.279) 0.9± 0.3 0.9± 0.3 0.8± 0.3 .26 (.772)

A - Intelligible 202± 66.2 188± 44.5 182± 49.0 .51 (.604) 1.3± 0.5 1.2± 0.4 1.3± 0.5 .11 (.899)
A - Unintelligible 9.3± 8.6 4.1± 4.8 2.6± 3.0 4.9 (.012) 0.8± 0.2 0.6± 0.3 0.9± 0.4 1.3 (.280)
A - Vocalization 42.2± 31.3 22.5± 13.9 17.5± 11.1 5.6 (.007) 0.6± 0.2 0.7± 0.3 0.6± 0.1 1.9 (.150)

Figure 2: Audio modeling pipeline for classification

fillers. Additionally, utterances from third parties or with
substantial overlaps are labeled separately, while background
noises are disregarded. Here, the third parties may be an exam-
iner supervising the remote session or other family members,
such as siblings, the other parent, or toddlers.

4. Method
4.1. Spoken Language Classification

As noted in Sec 1, we hypothesize that the amount of
speech from children indicates their spoken language levels.
This hypothesis motivates us to design spoken language la-
bels as described in Sec 3.2. Statistical results to substan-
tiate this assumption are presented in Sec 5.1. Thus, it
is beneficial to develop a robust model to classify the at-
tributes of both the speaker (adult/child) and the spoken lan-
guage (speech/vocalization). Consequently, we design a mod-
eling approach that explores speech embedding representations
for the classification tasks mentioned above. Below describes
the two sets of classification tasks performed in this work.
Child/Adult Classification: In this speaker classification task,
we include all utterances including intelligible speech, unintel-
ligible speech, and nonverbal vocalization.
Speech/Nonverbal Vocalizations Classification: For this spo-
ken language classification task, we use the utterances from
children only. We combine intelligible speech and unintelligi-
ble speech as the target speech entity for these experiments with
the assumption that there is a linguistic basis for both.

4.2. Modeling Architecture

We use the framework shown in Fig 2 for both speaker and spo-
ken language classification based on [29]. From the pre-trained
models, we extract the weighted average of all hidden layers,
where the weights are learnable. Then, we feed the weighted
average to a stack of three 1D convolution layers with each out-
put channel size 256 and with Rectified Linier Unit (ReLU) ac-
tivation function. Next, mean pooling is applied over the times-

Figure 3: Child intelligible speech utterance count and mean
speech duration box plots.

tamps resulting in a 256-dimensional vector. Finally, this vector
is passed to fully connected layers with one hidden layer of di-
mension 256 and output dimension 2 for classification.

5. Results and Analysis
5.1. Statistical Patterns in Spoken Language

This section presents the statistical comparisons between dif-
ferent categories of spoken languages. For each session, we
compute the total utterance count and mean duration of intelli-
gible speech, unintelligible speech, and nonverbal vocalization
for both children and adults. We exclude sessions with a count
of zero to calculate the average duration of each type of utter-
ance. For each of the three spoken language levels, we compute
the mean and standard deviation of both the utterance count
and the mean duration. Additionally, we conduct a one-way
ANOVA test to compare the three groups. Statistical results and
comparisons are presented in Table 3.

As observed from Figure 3 and Table 3, the total utterance
count and mean duration of child speech utterances are the most
significant indicators for differentiating the spoken language
levels with a strong positive correlation. The total utterance
count and mean duration of child unintelligible speech utter-
ances are also very low for LL-1, but they do not show substan-
tial differences between LL-2 and LL-3. No statistically sig-
nificant result is observed from child nonverbal vocalizations.
Counts of unintelligible utterances and vocalizations from adult
show moderate evidence of a negative correlation with spoken
language levels.

5.2. Training Details

Utterance samples shorter than 0.1 seconds are discarded and
all samples are truncated to have a maximum duration of 3 sec-
onds. Huggingface [30] is used to extract the pre-trained em-
beddings. For whisper, we use the version pre-trained only with
English. We perform 5-fold cross-validation, with the train and
test split at the session level. For the training, we use an 8:2
random split between training data and validation data at the
utterance level. Cross Entropy Loss is employed as the loss
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Table 4: Child / Adult Classification, F1 macro

Model LL-1 LL-2 LL-3 All

Majority Vote .438 .365 .386 .395
Wav2vec 2.0 Base .743 .833 .812 .798
WavLM Base+ .782 .859 .83 .826
Whisper Base Encoder .765 .848 .818 .812

Table 5: Speech / Vocalization Classification, F1 macro

Model LL-1 LL-2 LL-3 All

Majority Vote .696 .439 .411 .510
Wav2vec 2.0 Base .539 .694 .688 .644
WavLM Base+ .544 .74 .738 .678
Whisper Base Encoder .514 .755 .738 .675

function with weights inversely proportional to the number of
samples for each class. We use Adam optimizer with learning
rate of 5e−5 and weight decay 1e−4. The batch is set to 64
for all the experiments. A dropout of probability 0.2 is applied
for each convolutional layer. The maximum number of epochs
is set to 40, with an early stopping of patience 5. The hyper-
parameters are empirically determined for the best results. We
use a single NVIDIA GeForce GPU 1080 Ti for the training and
the whole process is expected to take less than two days. The
classification pipeline is depicted in Figure 2.

5.3. Modeling Results

The results of speaker classification and spoken language clas-
sification are reported in Tab 4 and Tab 5, respectively. We
consider the majority classifier as the baseline and we report
experimental findings in terms of the F1 macro score averaged
over corresponding sessions.
Speaker Classification: Table 4 shows that WavLM performs
the best across all three spoken language levels for speaker clas-
sification. This is likely because WavLM captures speaker in-
formation from its speech denoising modeling [24] during pre-
training. The scores for LL-1 are lower possibly because most
existing pre-trained models are trained to capture words and
word combinations, while such information is sparse in LL-1.
Spoken Language Classification: WavLM and Whisper en-
coder perform similarly better compared to Wav2vec 2.0.
Speech/vocalization classification task turns out to be a more
challenging task compared to child/adult classification. The
scores for LL-1 are substantially lower compared to other spo-
ken language levels, likely due to the skewed distribution where
most sessions have zero or few child speech utterances.
Gender-based Classification Comparison of classification re-
sults with WavLM between males and females are shown in
Table 6. We have 4 LL-1, 1 LL-2, and 2 LL-3 sessions for fe-
male children. We combine LL-2 and LL-3 since we have few
female sessions for those and the results for those two levels are
comparable as in Table 4 and Table 5. The scores for child/adult
classification task are notably lower for females.

5.4. Modeling Interpretation

T-SNE plots of three embeddings for child/adult and intelligi-
ble/unintelligible/vocalizations are shown in Figure 4. We use
the 256 dimensional vectors after the average pooling in the
classification model. Utterances are taken from a single session
with LL-3 and we use speaker and spoken language classifica-
tion models trained in the cross-validation with the target ses-

Figure 4: T-SNE plots for each embedding.

Table 6: Female vs Male Classification F1 macro

Classification Gender LL-1 LL-2, 3

Child/Adult Famle .695 .794
Child/Adult Male .817 .851
Speech/Vocalization Famle .554 .703
Speech/Vocalization Male .541 .743

sion in the test split. For child/adult, we limit the utterances to
intelligible speech. For intelligible/unintelligible/vocalizations,
we limit the utterances only to child utterances since the model
is trained only on child speech. We can clearly see the dif-
ferences between child and adult as well as between intelligi-
ble/unintelligible speech and vocalization for all models.

6. Conclusion
In this work, our focus is on assisting in the assessment of
developmentally-established spoken language abilities, codified
in terms of discrete stages of language levels. To achieve this,
we propose a novel annotation protocol to support this goal. We
present statistical analysis to demonstrate the need for speaker
classification as well as spoken language classification. We
explore the advantages of pre-trained speech embeddings and
provide promising experimental results in both classification
tasks. Our work is limited in that we did not integrate related
approaches to improve classification performance and fairness.
Future work includes exploring improved, fairer, more nuanced
(e.g., of intelligible vs. unintelligible articulation), and more
trustworthy methods [31]. We plan to explore multitask classi-
fication methods to improve spoken language classification. We
also plan to investigate methods for constructing an end-to-end
automated spoken language assessment pipeline from VAD to
speaker classification and spoken language classification.
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