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Abstract

Speech-based classification models in the cloud are gain-
ing large-scale adoption. In many applications where post-
deployment background noise conditions mismatch those used
during model training, fine-tuning the original model on local
data would likely improve performance. However, this is not
always possible as the local user may not be authorized to mod-
ify the cloud-based model or the local user may be unable to
share the data and corresponding labels required for fine-tuning.
In this paper, we propose a denoiser stored locally on edge de-
vices with an application-specific training scheme. It learns a
custom speech enhancement scheme that aligns the local de-
noiser with the downstream model, without requiring access
to the cloud-based weights. We evaluate the denoiser with a
common classification task — keyword spotting — and demon-
strate using two different architectures that the proposed scheme
outperforms common speech enhancement models for different
types of background noise.

Index Terms: speech enhancement, keyword spotting, capsule
network, cloud computing, data privacy

1. Introduction

Speech-based classification models in the cloud have gained
popularity. Examples include keyword spotting, speaker di-
arization, audio sentiment classification, among others. How-
ever, there are many scenarios where the background noise
conditions are different from those used during model training.
In such scenarios, fine-tuning the original model on local data
would likely improve performance. However, this is not always
possible as the local user may not be authorized to modify the
cloud-based model, or the local user may not be able to pro-
vide labeled data required for fine-tuning. In this setting, we
cannot change the classification model in the server with local
data, or download a copy of the model for fine-tuning. Further-
more, since multiple users may be using the same cloud-based
model, it is impractical for the model parameters to be changed
every time. In this paper, we propose a denoiser that is stored lo-
cally on the edge device and acts as a pre-processing step for the
downstream classification model. Specifically, it learns a cus-
tom speech enhancement scheme that aligns the local denoiser
with the cloud-based model without changing the model.

We focus on keyword spotting (KWS) as the downstream
classification task of interest. KWS plays an important role in
speech-based interaction applications such as wake-word detec-
tion and voice commands. Under noise-less conditions, deep
convolution neural networks with Mel-frequency cepstral coef-
ficients (MFCCs) or mel spectrum inputs have shown superior
performance on several keyword spotting tasks [1, 2, 3, 4].
However, performance declines rapidly in noisy conditions

[5, 6] This is problematic as devices that use wake-word detec-
tion (e.g. Alexa) are deployed in a variety of settings (homes,
offices, hospitals, etc.) and confront different types of back-
ground noise. Such complex and varying environmental noise
conditions pose a challenge for classification, especially un-
der noise conditions that the models have not been trained on
[5,7, 8]

To address the problem of background noise in speech sig-
nals, several types of speech enhancement methods have been
previously proposed. Conventional speech enhancement mod-
els use statistical signal processing [9, 10]. These methods fo-
cus on time/frequency domain filtering or statistical estimators
to filter out the noise from the noisy speech. Recently, speech
enhancement systems based on machine-learning and deep-
learning techniques have been proposed in [11, 12, 13, 14].
The aim of existing speech enhancement models is to improve
the “perceptual” quality of degraded speech. The improvement
in quality metrics such as SNR and PESQ indicate that the en-
hanced speech is “better” from the listener’s perspective. Our
objective is different. We aim to develop an enhancement model
that improves downstream classification performance and not
the perceptual quality.

We propose a KW S-specific training method for speech en-
hancement that can be tuned locally without requiring a copy
of the downstream model. We introduce a new KWS enhance-
ment loss term to match the outputs of our enhancement model
with that of a target KWS model. This term allows the de-
noiser model to learn from the downstream KWS model output
and carry out the speech enhancement task in a style preferred
by the downstream task. Furthermore, the training is done lo-
cally without requiring access to the weights of the large cloud-
based model. We evaluate the effect of the proposed KWS en-
hancement loss term on two denoiser models, ResCap denoiser
and Res-FC denoiser, that can be wrapped around any existing
KWS model to improve the performance of that model under
noisy conditions. The proposed ResCap denoiser model is in-
spired by the ResCap Network [15], which has demonstrated
that capsule networks exhibit superior performance for overlap-
ping keyword spotting tasks. The Res-FC denoiser has the same
design as the ResCap denoiser except that the capsule layers are
replaced with fully-connected layers. The purpose of evaluat-
ing two architectures is to empirically demonstrate that the loss
term provides improved performance across different networks.
The evaluation results showed that both denoiser models, when
trained with the KWS enhancement loss, outperformed the ex-
isting methods under various background noise scenarios, in-
cluding when the testing noise and the training noise are from
different sources.
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2. Methodology
2.1. Speech enhancement for robust keyword spotting

We assume a gray-box setting where the pre-trained KWS
model stays in the cloud computing server. The internal work-
ings of the KWS model cannot be modified, but the activation
during the forward pass and gradients during the backward pass
can be computed on the server side. Our aim is to train an
enhancement model to improve the performance of the gray-
box KWS model. To that end, we propose a loss function that
consists of a spectrum reconstruction loss and a KWS enhance-
ment loss. The spectrum reconstruction loss is computed lo-
cally to guide the auto-encoder to reconstruct the clean spec-
trum from the noisy input spectrum. It uses a mean-square-
error (MSE) loss between the clean spectrum (Seieqr) and the
enhanced spectrum (Senhanced):

)]

The KWS enhancement loss is calculated as follows. Let
y = G(z) denote the target KWS model where the input z is
the mel-spectrum of the input speech and the output y is the
vector of posterior probabilities generated by the KWS model,
one per class. In order for the enhanced spectrum to produce
a KWS result similar to the original clean spectrum, we intro-
duce the KWS enhancement loss. This is the MSE loss between
the KWS model output of the clean keyword spectrum and the
KWS model output of the enhanced keyword spectrum from
the speech enhancement model. We choose the MSE loss over
other loss functions, such as L1 loss, NLL loss, cross-entropy
loss, etc., because it achieves the best performance.

LRecon - MSE(Scleana Senhanced)

LKWS = MSE(G(Sclﬁan)7G(Senhanccd)) (2)

This term guides the speech enhancement model to enhance
the keywords in a way that improves the performance of the
target KWS model. The overall loss function is a linear com-
bination of the spectrum reconstruction loss and the KWS en-
hancement loss given by Loss = Lyecon + 1t - Lxkws. We
use 1 = 0.1 to train our models which is fine-tuned with the
development set. Overall, the dataflow of the training scheme
is as shown in figure 1. The communication between the server
and the local device happens once per batch of training samples.
During the forward pass, the enhanced spectrum Sephanced 1S
computed locally and sent to the server along with the reference
clean spectrum S¢ieqrn. During the backward pass, the gradi-
ent of Senhanced 1s computed on the server side and sent to
the local device. The local device then uses the gradient and
local reconstruction loss to complete the backward pass of the
local denoiser model and update it. The benefits of the training
scheme are: First, the training is carried out in an unsupervised
style, and the training samples are not labeled, ensuring data
privacy; Second, the server side sends back only the gradient
and not the model weights, ensuring model IP protection.

2.2. Denoiser models: ResCap and Res-FC

ResCap denoiser uses a capsule network-based auto-encoder
structure. As is shown in Figure 2, the encoder consists of 14
2D convolution layers followed by 2 capsule layers. The 2D
convolution layers are implemented in residual style, where 2
layers are grouped into a residual block with a bypass. Two cap-
sule layers are used, where the primary capsule layer consists
of 486 x 32 capsules and the output capsule consists of 1 x 16
capsules. The decoder uses a symmetric design to match the
encoder as in the SEGAN generator [13]. A three-layer MLP
is used to generate a 2D array from the output capsule. The
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Figure 1: Data flow of the algorithm-specific training
scheme. a) Forward pass, where clean (Sciean) and enhanced
(Senhanced) spectra are sent to the server, b) Backward pass,
where the gradient of KWS loss is sent to the local device

output 2D array is then fed into a stack of deconvolution lay-
ers. Each deconvolution layer generates the output array with
the same size as its corresponding convolution layer in the en-
coder. The decoder is regularized by using bypasses that pass
the intermediate outputs of encoder layers, as shown with gray
lines in Figure 2. The decoder outputs the enhanced spectrum
which is of the same size as the input spectrum.

N

Noisy Spectrum - :
I 1

[ Conv2D, 3x3, IC=1, 0C=32,, with BN |

14 layers (

Conv2D, 3x3, 1C=32, 0C=32 , with BN |

[ Conv2D, 28x28, IC=32, 0C=32, with BN |

| Primary Capsules 486 x 32

Output Capsule 1 X 16

3-Layer MLP

DeConv2D, 28x28, IC=32, 0C=32, with BN

DI

14 layers DeConv2D, 3x3, IC=64, 0C=32, with BN
l

<
DeConv2D, 3x3, IC=64, OC=1, with BN
|

Enhanced Spectrum L‘ ‘jh

Figure 2: ResCap Denoiser: a speech enhancement model with
ResCap generator and deconvolution-based decoder

The Res-FC denoiser maintains the 2D convolution and de-
convolution stack and the by-pass design of the ResCap de-
noiser and replaces the primary capsule layer and output cap-
sule layer with a fully-connected layer of the same size. The
3-layer MLP is also kept to restore the 2D array from the output
of the fully-connected layer. The deconvolution stack generates
the enhanced spectrum, as in the ResCap denoiser.

3. Evaluation
3.1. Experimental Setup

We use keywords from Google’s Speech Commands Dataset
[16] to train and evaluate the KWS model and the speech en-
hancement model. We select the same ten classes of keywords
as [15]: “backward”, “bed”, “follow”, “forward”, “marvin”,
“nine”, “sheila”, “six”, “visual” and “wow”. To build a noisy
keyword dataset, we use noise samples from Microsoft Scal-
able Noisy Speech Dataset (MS-SNSD) [17] and mix the noise
source and keyword samples with an SNR randomly selected
(uniformly distributed) in the range of 0dB to 10dB. The noisy
keyword samples are generated by adding a noise segment that



is of the same length as the keyword with an SNR randomly se-
lected in the range of 0 dB to 10 dB. 90,000 samples are used
for training, 13,000 for developing, and 13,000 for testing.

We use the mel spectrogram as the input of both the KWS
and existing enhancement models. The mel-spectrum settings
are as follows: the window length and FFT length are 1024,
the hop length between STFT windows is 256, the frequency
ranges from 20 to 8000 (at a sampling rate of 16kHz), and the
number of mel filters is 80. For the KWS model, we use the
ResNet model proposed in [18]. The model is trained with clean
keywords and fine-tuned to achieve the highest KWS accuracy.
The trained model is used as the target KWS in all experiments.
The KWS accuracy is measured by computing the percentage
of correctly predicted samples.

3.2. Evaluation for different loss functions

We consider three models in this section: ResCap from [15],
proposed ResCap and Res-FC denoisers. We build the training
set using a mix of seven types of noise sources: babble, air-
port announcement, air conditioner, printer, neighbor speaking,
and vacuum cleaner. Three different loss functions are used:
Recon-only loss, KWS-only loss, and the combined loss of re-
construction loss and KWS loss. The model is evaluated with
three representative types of noise sources: babble, printer, and
mixed noise, each representing speech-like noise environment,
mechanical noise environment, and the complex environment
that a KWS system may face. Tablel shows the KWS accuracy
using denoising models trained with different loss functions for
different noise scenarios.

Table 1: KWS accuracy using denoising models trained with
different loss functions

Model Babble Printer Mixed
Clean Keywords ~ 98.14%  98.14%  98.14%
Noisy Keywords  83.44%  88.30% 89.17%

Recon-only Loss
ResCap [15] 64.98% 67.04% 61.17%
Res-FC denoiser  83.08%  90.72%  83.74%
ResCap denoiser  85.92%  95.06%  88.09%
KWS-only Loss
ResCap [15] 60.33% 6248% 61.05%
Res-FC denoiser  80.13%  86.28%  81.73%
ResCap denoiser  85.50%  90.78%  86.42%
Recon+KWS Loss
Res-FC denoiser 91.50% 96.95% 93.50%
ResCap denoiser 91.83% 96.94% 93.64%

In the presence of different noise sources, the KWS accu-
racy significantly declined by 8.9% to 14.7%. When trained
with reconstruction-only loss (eqn.1), both the Res-FC denoiser
and the ResCap denoiser outperform the ResCap model on
KWS accuracy by > 15%. When trained with KWS-only loss
(eqn.2), while the KWS accuracy decreases compared to using
the reconstruction-only loss, both Res-FC and ResCap denoiser
still have significant performance improvement compared to the
ResCap model. When trained with Recon+KWS loss, the accu-
racy performance of the Res-FC denoiser and ResCap denoiser
significantly increase by around 7% on average, compared to
models trained with reconstruction-only loss.

3.3. Comparison against baseline enhancement methods

To show the advantage of our proposed algorithm-specific de-
noiser, we consider two state-of-the-art speech enhancement
models, that increase the perceptual quality of speech, as base-
lines: SEGAN [13] and DEMUCS [19]. In this experiment,
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both the training set and testing set use noise from the same
source. For a fair comparison, we fine-tune each enhancement
model on our noisy speech training dataset. Then we denoise
the noisy test samples before feeding them into the KWS model.

Table 2 shows the speech enhancement performance of the
proposed model and the baseline methods. While all speech en-
hancement methods increase the KWS accuracy under all noise
cases, both the Res-FC denoiser and the ResCap denoiser out-
perform the baseline models. Among the two denoiser models,
the ResCap denoiser achieves the highest performance. It im-
proves the KWS accuracy by 9.36% for babble noise, 6.78% for
printer noise, and 4.64% for mixed noise. The average accuracy
gain is 4.93% over SEGAN and 3.01% over DEMUCS.

Table 2: KWS accuracy when the model is trained and tested
with the same noise source

Model Babble Printer Mixed
Noisy Keywords  83.44%  88.30% 89.17%
SEGANI[13] 86.74%  89.87%  90.29%
DEMUCS[19] 89.46%  90.86%  92.34%
Res-FC denoiser 92.58% 94.97% 93.40%
ResCap denoiser 92.80% 95.08% 93.81%

3.4. Evaluation on out-of-domain noise

The differences in the background noise can also be challenging
to a local denoiser model which has not encountered those noisy
scenarios during training. To evaluate the robustness of the
proposed speech enhancement method, we evaluate its perfor-
mance on out-of-domain noise. First, to validate the robustness
across different corpora, we train all models using the mixed-
noise training set and test them on three new noise sources.
These include “Restaurant” noise from the MUSAN [20] noise
dataset and WHAM! [21] noise dataset. Table 3 results show
that overall these noise sources cause less KWS accuracy degra-
dation compared to babble noise, printer noise, and mixed noise
(shown in Table 2). Under these noise sources, SEGAN and
DEMUCS models exhibit very little increase in KWS accuracy
relative to noisy keywords. Under MUSAN noise, SEGAN-
enhanced keywords have almost the same accuracy as that of
noisy keywords, and DEMUCS-enhanced keywords achieve
an accuracy improvement of only 0.29%. In comparison, the
ResCap denoiser maintains high speech enhancement perfor-
mance for all three evaluations and outperforms SEGAN by
1.66%-2.42% and DEMUCS by 1.32%-1.79%.

Table 3: KWS accuracy of cross-corpora evaluation

Model MUSAN WHAM!
Noisy Keywords 93.73% 92.52%
SEGAN [13] 93.68% 92.64%
DEMUCS [19] 94.02% 93.27%
Res-FC denoiser  94.95% 94.77 %
ResCap denoiser 95.34%  95.06%

In a second out-of-domain evaluation experiment, we show
the performance of the ResCap denoiser when there is a
training-testing mismatch across the different noise sources
within the MS-SNSD dataset. Table 4 shows the KWS accuracy
results for all training-testing noise source combinations. As ex-
pected, we see that the highest accuracy is achieved when the
training and testing set consists of the same type of noise; how-
ever, the ResCap denoiser consistently improves the KWS per-
formance when the training and testing noises mismatch. The
average row shows that the highest overall accuracy is achieved
when the training set uses babble noise. We also find that end-



Table 4: KWS accuracy when the ResCap denoiser model is trained using one noise type and tested with different noise types

Training noise Baseline
Babble Airport A.C. Printer Neighbor Cleaner Noisy
Babble 92.8 91.73 88.66  89.87 91.75 90.21 83.44
Airport 94.36 95.45 93.23  93.81 93.99 93.84 89.77
Testing A.C. 96.55 96.93 97.34 96.7 96.26 96.88 95.41
Noise Printer 92.85 9175 91.85  95.08 92.48 94.23 88.3
Neighbor 92 91.38 87.19  89.18 93 89.59 84.04
Cleaner 91.34 90.36 89.16  93.36 91.93 94.95 85.64
Average 93.32 92.93 91.24  92.83 93.24 93.28 87.77

MFCC
Feature

Grad-Cam
Heat Map

a) Clean Keyword “Forward”
KWS prediction: “Forward”

b) Noisy Keyword “Forward”
KWS prediction: “Nine”

c) Enhanced Keyword “Forward” d) Enhanced Keyword “Forward”

Trained with Recon+KWS loss
KWS prediction: “Forward”

Trained with Recon-only loss
KWS prediction: “Sheila”

Figure 3: Spectrum and Grad-CAM heat map of clean, noisy, and enhanced keywords when using the ResCap denoiser

to-end fine-tuning risks overfitting to the noise type on which it
is trained, while our denoiser model has shown good generaliz-
ability under noise mismatch conditions.

3.5. Discussion

To better understand the effects of the KWS loss term, we
use Grad-CAM [22] as a visualization tool to explain how the
KWS model performs differently on different enhanced spec-
tra. GradCAM provides class-specific visualization of a model
by producing a coarse localization map highlighting important
regions in the image for predicting the class. Figure 3 shows
a sample case of the keyword “forward”. As shown in a), the
clean keyword is correctly classified, and the heat map indicates
that the middle-high frequency part has the highest importance
in the prediction. Figure 3b) shows that the middle-high fre-
quency features of the keyword are blurred by the background
noise, which leads to incorrect classification while the heat map
shows that the attention of the KWS model is still in the right
region. Figure 3c) and d) show the enhanced spectra from the
ResCap models trained with the two loss functions. The heat
maps show that when the keyword is enhanced with a model
trained with reconstruction-only loss, the KWS model fails to
focus on the correct region when making the decision, leading
to the incorrect recognition of the keyword. When the model is
trained with reconstruction+KWS loss, the heat map shows that
the KWS model focuses on the correct location. The enhanced
spectrum also maintains keyword features that contribute the
most to the classification task. As a result, the spectrum is cor-
rectly classified.

The Grad-CAM outputs indicate that the enhanced keyword

must fulfill two conditions to successfully classify a keyword.
First, the attention of the KWS model should be driven to the
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area corresponding to the keyword. Second, the enhanced spec-
trum must maintain the features of the keyword in the area that
the downstream KWS algorithm focuses on. The spectrum and
heatmap are shown in figure 3c) and d), indicate that the KWS
term guides the denoiser model to focus on locations that con-
tribute the most to the decision of the downstream model.

While this paper is focused on the utility of the denoiser
models in a KWS setting, the method is generally useful as a
pre-processor before any speech classification model where the
algorithm designer does not have access to the internal workings
of the classifier. The denoiser model only needs access to the
output posteriors of the model during training for the denoiser
to match the enhancement process.

4. Conclusions

This work proposed a denoiser model with an application-
specific training scheme that carries out speech enhancement
locally on the edge device for the speech processing model
housed in the cloud server. The denoiser model can be fine-
tuned locally without requiring labeled data from the user side
and access to the speech processing model from the server side.
Specifically, we use keyword spotting to showcase and evaluate
the performance of the proposed loss term using two denoiser
models, namely, ResCap and ResFC. The proposed denoiser
models are evaluated under various noise environments and the
results show that both denoiser models achieve higher KWS ac-
curacy under various background noise conditions and outper-
form state-of-the-art general-purpose speech enhancement al-
gorithms.
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