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Abstract
Most existing masked audio modeling (MAM) methods learn
audio representations by masking and reconstructing local spec-
trogram patches. However, the reconstruction loss mainly ac-
counts for the signal-level quality of the reconstructed spectro-
gram and is still limited in extracting high-level audio seman-
tics. In this paper, we propose to enhance the semantic model-
ing of MAM by distilling cross-modality knowledge from con-
trastive language-audio pretraining (CLAP) representations for
both masked and unmasked regions (MAM-CLAP) and lever-
aging a multi-objective learning strategy with a supervised clas-
sification branch (SupMAM), thereby providing more semantic
knowledge for MAM and enabling it to effectively learn global
features from labels. Experiments show that our methods signif-
icantly improve the performance on multiple downstream tasks.
Furthermore, by combining our MAM-CLAP with SupMAM,
we can achieve new state-of-the-art on various audio and speech
classification tasks, exceeding previous self-supervised and su-
pervised pretraining methods.
Index Terms: masked audio modeling, CLAP, multi-objective
learning

1. Introduction
Recent years have seen considerable success in masked image
modeling (MIM) [1, 2, 3] in the image domain, demonstrat-
ing promising results on a variety of downstream tasks, such
as image classification, semantic segmentation, and object de-
tection. MIM uses a pre-defined mask ratio to mask out image
patches and adds the reconstruction supervision to the masked
regions. In this study, we investigate the learning of general
audio representations using MIM applied to the audio spectro-
gram, which we call masked audio modeling (MAM) [4, 5, 6].
MAM splits the audio spectrogram into patches along the time
and frequency axes, enabling the model to learn both temporal
and frequency structures.

Currently, MAM has been applied to general audio repre-
senation learning, like SS-AST [7] and AudioMAE [4], show-
ing good performance on audio and speech classification tasks.
This indicates that MAM learns robust auditory representations
for both speech and non-speech signals. However, it is generally
believed that the reconstruction loss mainly accounts for signal-
level quality at time-frequency domain but is still limited in
learning high-level audio semantic knowledge [8, 9]. Besides,
audio exhibits different characteristics from images. It is not
easy to find an auditory-perception-aware patching strategy that
fits various sound events with diverse scales. Masking with an
extremely high ratio (80% mask ratio on AudioMAE [4]) would
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unavoidably harm sound events with a short time/frequency
span.

In addition to MAM, supervised pretraining is also widely
studied for audio semantic modeling, which leverages either
out-of domain data (e.g. ImageNet [10]) or in-domain audio
data (e.g. AudioSet [11]) for pretraining. As for the out-of-
domain supervised pretraining, HTS-AT [12] employs the Swin
Transformer-based architecture [13] as the backbone, which ob-
tains superior audio classification performance. For in-domain
supervised pretraining, inspired by the language-vision pre-
training method CLIP [14], CLAP [15, 16] utilizes a contrastive
language-audio pretraining task to learn the text-enhanced au-
dio representations with audio and text pairs. Compared with
MAM, these methods learn different levels of semantics, which
could complement each other.

In this paper, we aim to enhance the semantics for MAM
by leveraging external cross-model information. To this end,
we present MAM-CLAP, a simple yet effective framework that
incorporates multimodal information into MAM. We take Au-
dioMAE [4] as the benchmark for MAM, which learns to
efficiently encode the visible patches into latent representa-
tions that carry essential information for reconstructing masked
patches. Our motivation is that multimodal data can provide
additional richer semantic knowledge. In this case, we apply
the CLAP model to provide semantic guidance for MAM as
it shows great robustness on various audio downstream tasks
[16, 17, 18]. Moreover, unlike most MAM methods apply-
ing the reconstruction supervision on masked patches, we find
that supervisions on both masked and visible patches with
the CLAP target can achieve remarkable performance, which
demonstrates that the visible patches can also effectively ex-
tract rich semantic information from CLAP, performing like the
feature distillation.

Furthermore, most existing MAM methods [4, 5, 19] only
learn feature interactions among patches. No global features,
i.e., features that can represent the entire spectrogram, are ex-
plicitly learned during pretraining. To complement this, we
extend MAM to a supervised setting (SupMAM) by adding
a branch for supervised classification in parallel with the re-
construction target, thereby enabling MAM to effectively learn
global features from labels. To make it sample-efficient, only
a subset of visible patch features are used for the classification-
based pretraining branch, where an average pooling is employed
to get the global audio representation followed by a MLP for
classification.

In a nutshell, our contributions are threefold:
• We provide a novel perspective that the CLAP-targeted fea-

ture supervision on the spectrogram patches is a good choice
for audio representation learning. We develop a simple yet
effective framework MAM-CLAP to improve the semantic
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Figure 1: The overview of our SupMAM-CLAP.

modeling of MAM-based audio pre-training.
• We introduce a multi-objective learning method that ex-

tends AudioMAE to a fully-supervised setting (SupMAM)
by adding a supervised classification branch. SupMAM only
uses a subset of the visible patches to do classification rather
than all patches used in standard supervised pre-training.

• By combining our MAM-CLAP with SupMAM, our
SupMAM-CLAP can achieve state-of-the-art results across
various audio and speech classification benchmarks.

2. SupMAM-CLAP
2.1. MAM-CLAP

The overview of our SupMAM-CLAP is illustrated in Figure
1. Let X denote an input spectrogram. We take AudioMAE
[4] as the backbone. Our MAM-CLAP first embeds X into N
patches, which are then randomly masked by a specific pro-
portion γ. These N patches are naturally split into two non-
overlapped sets, i.e., visible patches Xv and masked patches
Xm, where N = |v| + |m|. The mask ratio is thus denoted
as γ = |m|/N . The AudioMAE encoder e(·) maps the visible
patches Xv to the latent representations Zv . The decoder g(·)
predicts the latent representations Zm for the masked patches
from mask tokens Em, conditioned on the visible latent repre-
sentation Zv . After that, the predictions of visible patches Yv

and masked patches Ym are obtained via a head h(·). In this
work, we only use a fully-connected layer followed by a layer
normalization in h(·). For the target supervision, we directly
input the spectrogram X into the CLAP model f(·) to generate
the target supervision T . T is then split into Tv and Tm corre-
sponding to the positions of Xv and Xm. The optimization is
applied on Yv to approach Tv , and we also add the supervision
on Ym using Tm.

2.2. SupMAM

Unlike standard supervised pretraining methods [23, 20, 26]
that use all patch features, SupMAM only uses a subset of
the visible patches to do classification, which makes SupMAM
more sample-efficient. This is mainly based on the intuition that
humans can recognize sound events with partial information (a
subset of patches). Also, from the perspective of data augmen-
tation, random masking can generate different training samples
for each iteration [27, 5, 28], serving as a strong regularization.

In this case, a global pooling first condenses the visible lo-
cal patch features Zv into the global representation Gv of the
spectrogram, which is then used to predict the sound event la-

bels. The classification branch is complementary to the feature
reconstruction branch as it can bring global feature learning into
the framework. For the classification head, we use a two-layer
MLP, with a batch normalization and a ReLU activation injected
in-between to project the global representation into the logits
of the predicted probabilities pv . During fine-tuning, we only
use the AudioMAE-based transformer encoder for downstream
tasks.

2.3. Loss Functions

Most previous MAM methods [4, 6, 19] only apply the re-
construction supervision on the predictions of masked patches.
With CLAP as the target, we supervise both visible and masked
patches. The L2 loss functions are used as follows:

Ltarget =
1

lv
∥Yv, Tv∥2 +

1

lm
∥Ym, Tm∥2, (1)

where lv and lm denote the number of visible and masked to-
kens.

For SupMAM, we use the cross-entropy (CE) loss Lcls to
supervise the training process with the classification label y:

Lcls = CE(pv/τ, y), (2)

where τ is a temperature parameter that controls the concentra-
tion level of the distribution, which is widely used in supervised
and self-supervised feature learning.

Finally, our SupMAM-CLAP is optimized with both the
CLAP-target loss and the classification loss, which simultane-
ously learns fine-grained local and global features. We use a
weighted sum of these two loss terms as our total loss as fol-
lows:

Ltotal = Ltarget + λclsLcls, (3)

where λcls are weights to balance the objective. Note that when
only using our SupMAM framework, Ltarget is replaced by
the mean square error (MSE), i.e., the reconstruction loss of
AudioMAE between the reconstructed and the input masked
patches.

3. Experiments
We perform extensive evaluations on five tasks, including audio
classification on AudioSet (AS-2M, AS-20K) [11] and Environ-
mental Sound Classification (ESC-50) [29], and speech classi-
fication on Speech Commands (SPC-1 and SPC-2) [30].
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Table 1: Comparing with the SOTA models on audio and speech classification tasks. IN, AS, and LS denote the ImageNet, AudioSet, and
LibriSpeech datasets, respectively. TA denotes the text-audio pairs for CLAP pretraining. † represents results from our implementation.

Method Data AS-2M AS-20K ESC-50 KS1 KS2

No Pretraining
PANN [20] - 43.1 27.8 83.3 - 61.8
ERANN [21] - 45.0 - 89.2 - -

Out-of-domain Supervised Pretraining
PSLA [22] IN 44.0 31.9 - - 96.3
AST [23] IN 45.9 34.7 88.7 95.5 98.1
PaSST [24] IN+AS 47.1 - - - -
HTS-AT [12] IN 47.1 - - - 98.0

In-domain Supervised Pretraining
PANN [25] AS - - 94.7 - -
ERANN [21] AS - - 96.1 - -
PaSST [24] IN+AS - - 96.8 - -
HTS-AT [12] IN - - 97.0 - -
CLAP [15] TA - - 96.7 - -

Self-Supervised Pretraining
SS-AST [7] AS+LS - 31.0 88.8 96.0 98.0
MSM-MAE [19] AS - - 85.6 - 87.3
MaskSpec [6] AS 47.1 32.3 89.6 - 97.7
MAE-AST [5] AS+LS - 30.6 90.0 95.8 97.9
AudioMAE [4] AS 47.3 37.1 94.1 96.9 98.3
AudioMAE† AS 47.1 36.8 93.8 96.7 98.1

Ours
MAM-CLAP AS+TA 47.6 37.8 96.8 97.2 98.1
SupMAM AS 47.7 37.6 96.2 97.3 98.2
SupMAM-CLAP AS+TA 48.1 38.2 97.2 97.6 98.3

3.1. Datasets

AudioSet (AS-2M, AS-20K) [11] contains about 2 million 10-
second YouTube clips with 527 sound events. The full training
set has 2 subsets: a class-wise balanced (22,176 clips) and an
unbalanced (2,042,985 clips) set. The eval set has 20,383 clips.
We collected and processed around 1.9M unbalanced training,
21K balanced training, and 19K evaluation clips due to the fre-
quent change in YouTube videos available (e.g., videos being
removed or taken down). For the AS-2M experiments, we use
all unbalanced and balanced training audio clips for pretraining
and finetuning. For the AS-20K experiments, we employ AS-
2M for pretraining and the 20K balanced set for fine-tuning. We
evaluate our models on the 19K eval set with the mean average
precision (mAP) evaluation metric.

Environmental Sound Classification (ESC-50) [29] is
an audio classification dataset including 2,000 5-second envi-
ronmental sound recordings annotated with 50 classes. Each
recording is only tagged with one class. We follow the 5-fold
cross-validation evaluation setting as the previous work [4] and
report the classification accuracy as the evaluation metric.

Speech Commands (SPC-2, SPC-1) [30] are two keyword
spotting tasks. There are 35 speech commands in SPC-2. The
training/validation/testing set contain 84,843/9,981/11,005 1-
second recordings, respectively. In SPC-1, there are 10 classes
of keywords, 1 silence class, and 1 unknown class that includes
all the other 20 common speech commands. We report the test-
ing accuracy based on the data and split provided by the SU-
PERB benchmark [31].

Table 2: Influences of the mask ratio in our MAM-CLAP.

Mask Ratio AS-20K ESC-50

10% 37.4 96.6
20% 37.8 96.8
30% 37.7 96.8
40% 37.6 96.5

3.2. Training Details

We employ a standard 12-layer ViT-B by default as the trans-
former encoder, where we keep the model size similar to Au-
dioMAE for a fair comparison. For the decoder, we only use
a single transformer block with shifted local attention for our
MAM-CLAP and SupMAM-CLAP. In addition, we follow the
training pipeline of AudioMAE [4] to train our models. We
resample each raw waveform to 16 khz, and extract the 128-
dimensional mel-filter bank features using a 25ms Hanning
window that shifts every 10ms as the acoustic feature. The re-
sulting spectrogram for a 10-second clip in AudioSet has a di-
mension of 1 × 1024 × 128. Each acoustic feature is divided
into 16 × 16 patches, which are then flattened into a patch se-
quence as the model input. We use AudioSet-2M for pretraining
(including the supervised branch) and randomly iterate over all
audio clips. We distribute the training load over 4 V100 GPUs
with a batch size of 128 and a learning rate of 0.0002.

For our MAM-CLAP, we adopt the CLAP feature to su-
pervise the masked and unmasked patches. For our SupMAM,
we leverage the patch reconstruction branch and the supervised
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Table 3: Influences of the mask ratio in our SupMAM.

Mask Ratio AS-20K ESC-50

20% 37.4 95.9
30% 37.5 96.1
40% 37.6 96.2
50% 37.5 96.0
60% 37.3 95.8

Table 4: Influences of the pretraining objectives in our Sup-
MAM.

Pretraining Objectives AS-20K ESC-50

80% mask ratio
rec 36.8 93.8
cls 33.1 91.3

rec+cls 37.2 95.4

40% mask ratio
rec 36.6 93.3
cls 33.9 91.9

rec+cls 37.6 96.2

classification branch simultaneously. For our SupMAM-CLAP,
we use the CLAP feature to supervise the masked and unmasked
patches while employing the supervised classification branch.
λcls is set as 0.01 for SupMAM and 0.0001 for SupMAM-
CLAP. Different from AudioMAE with a 80% mask ratio dur-
ing pretraining, we use a masking ratio of 20% with unstruc-
tured random masking for our MAM-CLAP and SupMAM-
CLAP, and adopt a 40% masking ratio for our SupMAM to
achieve better performance. During pretraining, we do not ap-
ply any augmentation methods. During the finetune stage, we
employ the SpecAugment [27] with 0.2 in time masking and 0.2
in frequency masking for our methods.

3.3. Experimental Results

Table 1 compares our methods to prior state-of-the-art results.
With the CLAP target, our MAM-CLAP achieves the best per-
formance across all tasks compared to other models with out-of
domain supervised pretraining, and self-supervised pretraining
methods, just slightly worse than HTS-AT with in-domain su-
pervised pre-training on ESC-50. On AudioSet-2M, it improves
the performance to 47.6 mAP. On AudioSet-20K and ESC-
50, MAM-CLAP outperforms AudioMAE by a large margin.
For the speech tasks (KS1, KS2), MAM-CLAP also achieves
competitive performance compared with prior SOTA methods.
What’s more, our SupMAM also demonstrates superior perfor-
mance on multiple downstream tasks. By combining our MAM-
CLAP with SupMAM, we can achieve new SOTA results on all
tasks compared to all previous SOTA models, which strongly
demonstrates the effectiveness of our methods.

3.4. Ablation Study

In this part, we discuss the influence of the mask ratio in our
MAM-CLAP, and the mask ratio, the pretraining targets, the
classification loss ratio in our SupMAM. Here, we test the per-
formance on the AS-20K and ESC-50 datasets.

Influences of the mask ratio in our MAM-CLAP. The
mask ratio is a hyper-parameter that needs hand-design in MAM

Table 5: Influences of the classification loss ratio in our Sup-
MAM.

Classification Loss Ratio AS-20K ESC-50

0.05 37.2 95.7
0.02 37.5 96.0
0.01 37.6 96.2

0.005 37.3 95.8

methods. Given that we replace the reconstruction target with
the CLAP feature and apply the supervision on both masked
and visible patches in MAM-CLAP, we suppose that it may not
be appropriate to adopt a high mask ratio as that in AudioMAE.
Here, we show the results of different mask ratios, ranging from
10% to 40% with our MAM-CLAP in Table 2. It can be seen
that unlike AudioMAE that achieves the best score with 80%
mask ratio, our MAM-CLAP with 20% mask ratio achieves the
best performance.

Influences of the mask ratio in our SupMAM. In this
part, we extend AudioMAE to a supervised setting. As shown
in Table 3, too large mask ratio will decrease the performance
under supervised setting. The reason may be that when there
are too many patches masked out, some short or inconspicuous
sound events are easily erased up, resulting in incorrect classifi-
cation and adversely affecting the model training. A 40% mask
ratio can bring the best performance while retaining the advan-
tages of AudioMAE and the supervised classification branch.

Influences of the pretraining objectives in our Sup-
MAM. Table 4 studies the pretraining objectives with 80% and
40% mask ratios. The method degrades into AudioMAE with
only the reconstruction (rec) objective. If only the classification
(cls) objective is used, the method degrades into the supervised
pretraining method with 80% or 40% input patches masked out.
We discover that the self-supervised pretraining is compatible
with the supervised objective and neither the reconstruction nor
the classification objective can perform well when used in iso-
lation. This is because only with both objectives can 100%
patches be exploited: (1) reconstruction operates on the masked
patches to learn local features, and (2) classification operates on
the visible patches to provide the global feature learning ability.

Influences of the classification loss ratio in our Sup-
MAM. As shown in Table 5, to achieve a balance between the
two pretraining goals for SupMAM, we first set the ratio of the
reconstruction loss to 1, and then tune the classification ratio.
We find that a 0.01 classification loss ratio is optimal. A ra-
tio that is too high would cause SupMAM to degrade into su-
pervised pretraining (with a large proportion of input patches
masked out), which is detrimental to the network pretraining.

4. Conclusions
In this paper, we propose to enhance the semantic modeling
of MAM by distilling cross-modality knowledge from CLAP
representations for both masked and unmasked regions (MAM-
CLAP) and leveraging a multi-objective learning strategy with
a supervised classification branch (SupMAM), thereby provid-
ing more semantic knowledge for MAM and enabling it to ef-
fectively learn global features from labels. Experiments show
that our MAM-CLAP significantly improves the performance
on multiple downstream tasks. Moreover, by combining our
MAM-CLAP with SupMAM, we can achieve new state-of-the-
art on various audio and speech classification benchmarks.

2766



5. References
[1] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked

autoencoders are scalable vision learners,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2022, pp. 16 000–16 009.

[2] Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, and
H. Hu, “Simmim: A simple framework for masked image mod-
eling,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 9653–9663.

[3] X. Zhang, J. Chen, J. Yuan, Q. Chen, J. Wang, X. Wang, S. Han,
X. Chen, J. Pi, K. Yao et al., “Cae v2: Context autoencoder with
clip target,” arXiv preprint arXiv:2211.09799, 2022.

[4] P.-Y. Huang, H. Xu, J. B. Li, A. Baevski, M. Auli, W. Galuba,
F. Metze, and C. Feichtenhofer, “Masked autoencoders that lis-
ten,” in Advances in Neural Information Processing Systems.

[5] A. Baade, P. Peng, and D. Harwath, “Mae-ast: Masked
autoencoding audio spectrogram transformer,” arXiv preprint
arXiv:2203.16691, 2022.

[6] D. Chong, H. Wang, P. Zhou, and Q. Zeng, “Masked spectrogram
prediction for self-supervised audio pre-training,” arXiv preprint
arXiv:2204.12768, 2022.

[7] Y. Gong, C.-I. Lai, Y.-A. Chung, and J. Glass, “Ssast: Self-
supervised audio spectrogram transformer,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 36, no. 10, 2022,
pp. 10 699–10 709.

[8] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford,
M. Chen, and I. Sutskever, “Zero-shot text-to-image generation,”
in International Conference on Machine Learning. PMLR, 2021,
pp. 8821–8831.

[9] H. Bao, L. Dong, S. Piao, and F. Wei, “Beit: Bert pre-training
of image transformers,” in International Conference on Learning
Representations.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition. Ieee,
2009, pp. 248–255.

[11] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio set: An ontology
and human-labeled dataset for audio events,” in 2017 IEEE inter-
national conference on acoustics, speech and signal processing
(ICASSP). IEEE, 2017, pp. 776–780.

[12] K. Chen, X. Du, B. Zhu, Z. Ma, T. Berg-Kirkpatrick, and S. Dub-
nov, “Hts-at: A hierarchical token-semantic audio transformer for
sound classification and detection,” in ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2022, pp. 646–650.

[13] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 10 012–10 022.

[14] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agar-
wal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning
transferable visual models from natural language supervision,” in
International conference on machine learning. PMLR, 2021, pp.
8748–8763.

[15] B. Elizalde, S. Deshmukh, M. A. Ismail, and H. Wang, “Clap:
Learning audio concepts from natural language supervision,”
arXiv preprint arXiv:2206.04769, 2022.

[16] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick, and
S. Dubnov, “Large-scale contrastive language-audio pretraining
with feature fusion and keyword-to-caption augmentation,” in
ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[17] Y. Xin, D. Yang, and Y. Zou, “Improving text-audio retrieval by
text-aware attention pooling and prior matrix revised loss,” in
ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[18] Y. Xin, D. Yang, F. Cui, Y. Wang, and Y. Zou, “Improving weakly
supervised sound event detection with causal intervention,” in
ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[19] D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada, and K. Kashino,
“Masked spectrogram modeling using masked autoencoders for
learning general-purpose audio representation,” arXiv preprint
arXiv:2204.12260, 2022.

[20] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumb-
ley, “Panns: Large-scale pretrained audio neural networks for
audio pattern recognition,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 28, pp. 2880–2894, 2020.

[21] S. Verbitskiy, V. Berikov, and V. Vyshegorodtsev, “Eranns: Ef-
ficient residual audio neural networks for audio pattern recogni-
tion,” Pattern Recognition Letters, vol. 161, pp. 38–44, 2022.

[22] Y. Gong, Y.-A. Chung, and J. Glass, “Psla: Improving audio
tagging with pretraining, sampling, labeling, and aggregation,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 29, pp. 3292–3306, 2021.

[23] Yuan Gong and Yu-An Chung and James Glass, “Ast: Audio spec-
trogram transformer,” Proc. Interspeech 2021, pp. 571–575, 2021.
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