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Abstract
Nowadays, a common framework for weakly supervised sound
event detection (WSSED) is multiple instance learning (MIL).
However, MIL directly optimizes the clip-level classification re-
sults, so it tends to localize the most distinct part rather than the
entire sound event, making the indiscriminating parts of sound
events mistakenly identified as background sounds. In this pa-
per, we focus on adding background awareness for WSSED
by proposing a learning structure called BA-WSSED. Our BA-
WSSED first introduces a pseudo separator with softmax acti-
vation and two aggregators to purify and aggregate the event
feature and the background feature, respectively. Then, with
the help of the proposed background-aware staggered (BAS)
loss, both the event classifier and the background classifier are
learned to generate staggered classification scores for discern-
ing and suppressing background sounds. Experiments show that
our BA-WSSED significantly improves the performance of the
general MIL-based WSSED method on multiple datasets and
can be employed on various baseline models.
Index Terms: weakly supervised sound event detection, back-
ground awareness, multiple instance learning

1. Introduction
Sound event detection (SED) [1–3] consists of two subtasks,
one is to tag the absence or presence of sound events in an au-
dio clip, and the other is to locate their corresponding onset
and offset times. SED has many potential applications (e.g.,
smart cities [4], surveillance [5]) and can also help enhance
the performance of many other related tasks (e.g., audio cap-
tion [6], audio-text retrieval [7, 8], speech enhancement and
separation [9–11]). Recently, weakly supervised sound event
detection (WSSED) [12–14] has gained increasing attention as
weak labels are much easier to gather than strong labels. A
common framework for WSSED is multiple instance learning
(MIL) [15, 16]. In MIL, we do not know the ground-truth la-
bel of each training instance; instead, the instances are grouped
into bags, and we only know the label of bags. For WSSED,
every training audio represents a bag, and its frames are treated
as instances.

The general MIL-based WSSED method provides two ways
to determine the clip-level predictions of an audio clip based on
the frame-level information: the instance-level strategy and the
embedding-level strategy. For the instance-level strategy, the
aggregator integrates the frame-level probabilities generated by
the classifier to produce the clip-level prediction result. For the
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embedding-level strategy, the aggregator pools the frame-level
features output by the feature extractor into a clip-level feature,
which is then fed into the classifier to obtain the clip-level prob-
ability. In [17], Lin et al. carried out a series of experiments
and found that the embedding-level approach tends to perform
better than the instance-level approach but receives less atten-
tion. Taking account of this, our work focuses more on the
embedding-level approach and adopts it as our baseline.

However, the general MIL-based WSSED method only op-
timizes the global loss calculated from the aggregated clip-level
predictions and weak clip-level labels, lacking direct constraints
on the frame-level information, so it tends to localize the most
distinct part but not the whole sound event, thus failing to catch
the indiscriminating parts of sound events and misidentifying
them as background sounds.

In this work, we attribute the above problems of the gen-
eral MIL-based WSSED method to its unawareness of the back-
ground sound. Specifically, the goal in the WSSED training
phase is to determine whether each category exists in an audio
clip, rather than detecting sound events for each frame like the
strongly labeled SED task, so the model tends to capture the
most prominent features of each sound event category instead
of learning to localize the whole sound event, thus failing to
catch the indiscriminating parts of sound events and misiden-
tifying them as background sounds. Besides, in many widely
used WSSED datasets (e.g., DCASE2017 task4 and UrbanSED
datasets), an input audio clip contains at least one sound event,
so that the aggregated pure-background feature remains invis-
ible for the clip-level supervised SED task. As a result, the
general MIL-based WSSED method focuses more on discern-
ing different sound event classes, but has limitations in simulta-
neously identifying whether one frame belongs to sound event
parts or background sounds.

Moreover, the unawareness of background sounds also pre-
vents the MIL-based WSSED method from suppressing the
over-activation of the frames representing background sounds
in an audio clip, especially the kind of background sounds
that often co-occur with specific sound events, which are eas-
ily mistaken for being part of the co-occurring sound events.
Therefore, if the background cues can be perceived, the over-
activation of background sounds can be suppressed, and thus
the performance of sound event localization can be improved.

In this paper, we focus on adding background awareness for
WSSED by proposing an end-to-end learning structure called
BA-WSSED. Our BA-WSSED attempts to generate the “un-
seen pure-background samples” by aggregating the frame-level
features of sound events and background sounds, respectively.
Then, with the assistance of our background-aware staggered
(BAS) loss, an additional background classifier can be simulta-
neously learned with the event classifier to discern and suppress
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Figure 1: The comparison of the general MIL-based WSSED pipeline and our BA-WSSED.

the background sounds by considering background prediction
as a multi-label classification task, thus preventing sound events
from being misidentified as background sounds and helping the
model to capture the indistinct parts of sound events.

In a nutshell, our contributions are threefold:
• To the best of our knowledge, our work is the first to supple-

ment background awareness for WSSED and simultaneously
learn both event and background classifiers with only clip-
level labels.

• A novel structure called BA-WSSED is proposed to discern
and suppress the background sounds and a BAS loss is elab-
orated to efficiently train our BA-WSSED in an end-to-end
manner.

• Experiments show that our BA-WSSED significantly im-
proves the performance of the general MIL-based WSSED
method and can generalize to various baseline models.

2. Proposed method
2.1. Cause of the Unawareness of Background Sounds

The general MIL method only optimizes the global classifica-
tion loss with the clip-level label y, so it tends to localize the
most discriminating part but not the whole sound event, which
leads to over-activation of background sounds and thus severely
limits the localization performance. We attribute the problem
to the inconsistent goals between MIL and SED, where MIL
places too much emphasis on the clip-level sound event classi-
fication without taking into account the characteristic of SED,
e.g., the location of background sounds, which is also critical
and needs to be discerned for the WSSED task.

Besides, in many common WSSED datasets, since an audio
clip contains at least one sound event, pure-background clip-
level samples do not exist for the training of MIL in WSSED, so
the model focuses more on learning to discern different sound
event classes with only clip-level labels in the training stage,
and thus cannot identify well whether a frame belongs to sound
events or background sounds when performing frame-level pre-
dictions during inference. The inconsistency of training and
inference objectives is a non-negligible gap for the classifier,
which diminishes the capacity of the classifier in discerning and
suppressing activation of background sounds to a great extent
and seriously affects the accuracy of sound event localization.

Moreover, for the general MIL-based WSSED method, as
shown in Fig. 1 A, the feature aggregator pools the frame-level

features of sound events and background sounds mixedly. As a
result, the clip-level feature z is unavoidably affected by the dis-
tribution of the background sound, especially those background
sounds that often co-occur with sound events, causing undesir-
able background activation.

2.2. Network Design

To solve the above problems, our BA-WSSED is proposed as
shown in Fig. 1 B. We first introduce event and background ag-
gregators to replace the original single aggregator (i.e., the pool-
ing function) [16, 18]. Specifically, after obtaining the frame-
level features Z ∈ RC×N by the feature extractor (e.g., CNN,
RNN or Transformer-based backbone), where C is the number
of channels and N is the number of frames, we employ a 1× 1
convolution with column-wise softmax activation as the pseudo
separator, to project and generate the event prior Ae and the
background prior Ab for each temporal position of the frame-
level features Z:





Ae
:,i =

exp(W1∗Z:,i)∑N
j exp(W1∗Z:,j)

Ab
:,i =

exp(W2∗Z:,i)∑N
j exp(W2∗Z:,j)

, (1)

where W1 ∈ RM×C and W2 ∈ RM×C are weight matrices
for 1 × 1 convolution. Thus, each column-vector of the priors
Ae and Ab ∈ RM×N can be viewed as an attention map to
capture the temporal relations of frames by activating potential
locations that belongs to sound events or background sounds,
where M is the number of attention maps. Then, based on
the two priors Ae and Ab, the event aggregator and the back-
ground aggregator are adopted to generate clip-level features ze

and zb ∈ RC×1. In detail, we first utilize the corresponding
column-vectors of Ae (or Ab) as the attention map to aggre-
gate the frame-level features Z into M different aggregation
features. Then, the final clip-level features are obtained by cal-
culating the mean strength of these aggregation features:

{
ze = 1

M

∑M
m

∑N
i Ae

m,iZ:,i

zb = 1
M

∑M
m

∑N
i Ab

m,iZ:,i
. (2)

Profited by the two priors, the clip-level event feature ze is less
affected by the background feature compared to the clip-level
feature z of the general MIL-based WSSED method. Further-
more, the additional clip-level background feature zb simulates
features aggregated from “pure background audio clips”, which
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Table 1: Performance comparison of our BA-WSSED and pre-
vious methods on the DCASE2017 task4 evaluation set.

Method AT-F1 Seg-F1 Event-F1

Winner SED [19] 0.526 0.555 -

CNN-I [20] 0.565 0.466 0.103
CDur-I [21] 0.553 0.508 0.152

CNN Transformer-I [20] 0.629 0.556 0.195
CNN biGRU-I [20] 0.625 0.564 0.193

HTSAT-I [22] 0.636 0.587 0.178

CNN-E 0.608 0.522 0.114
CDur-E 0.556 0.516 0.158

CNN Transformer-E 0.636 0.564 0.202
CNN biGRU-E 0.633 0.566 0.196

HTSAT-E 0.640 0.590 0.180

CNN-BA 0.627 0.546 0.123
CDur-BA 0.568 0.532 0.166

CNN Transformer-BA 0.641 0.570 0.206
CNN biGRU-BA 0.658 0.586 0.205

HTSAT-BA 0.662 0.604 0.186

assists the subsequent classifiers to discern and suppress the ac-
tivation of background sounds.

Our BA-WSSED adopts two classifiers, which adds an ad-
ditional background classifier sB(·) upon the event classifier
sE(·). By feeding the two clip-level features ze and zb into our
event and background classifiers, we can obtain four classifica-
tion scores sEe, sEb, sBe, and sBb ∈ RK×1, which are all used
to supervise the network training with the clip-level labels y,
where K is the number of classes. Specifically, the event clas-
sifier generates two event classification scores sEe and sEb re-
spectively for the clip-level event feature ze and the background
feature zb. Likewise, the background classifier produces two
background classification scores sBe and sBb. Based on the
four classification scores, we will introduce the details of our
background-aware staggered (BAS) loss in the next subsection.

2.3. Background-aware Staggered Loss

In general, the background-aware staggered (BAS) loss serves
as a multi-task loss that trains the event classification and back-
ground classification tasks with our ze and zb samples. The
labels for both tasks are gathered based on the following prop-
erties:

The feature aggregated by sound events, i.e., ze, is the pos-
itive sample for event classification, so the clip-level label y
is the ground-truth of the event classification task for ze, i.e.,
yEe = y. On the other hand, ze is the negative sample for
background classification, which is also the positive sample of
other inactive sound event classes for the background classifi-
cation task. Consequently, 1 − y is the ground-truth of the
background classification task for ze, i.e., yBe = 1− y.

The feature aggregated by background sounds, i.e., zb, is
the negative sample of all sound events for event classification.
Therefore, 0 is the ground-truth of the event classification task
for zb, i.e., yEb = 0. Meanwhile, zb is the positive sample
of all sound events for background classification. As a result, 1
is the ground-truth of the background classification task for zb,
i.e., yBb = 1.

After obtaining the labels of the samples ze, zb on the event
and background classification tasks, the BAS loss is designed
to train our BA-WSSED. In detail, our BAS loss contains four

Table 2: Performance comparison of BA-WSSED and previous
methods on the weakly labeled UrbanSED test set.

Method AT-F1 Seg-F1 Event-F1

Base-CNN [23] - 0.560 -
CDur-I [21] 0.771 0.647 0.217

HTSAT-I [22] 0.771 0.644 0.210

CDur-E 0.775 0.650 0.218
HTSAT-E 0.778 0.648 0.216

CDur-BA 0.784 0.658 0.221
HTSAT-BA 0.785 0.661 0.224

terms:

Lbas = λ1 ∗ LE(s
Ee, y) + λ2 ∗ LB(s

Be, 1− y)+

λ3 ∗ LE(s
Eb, 0) + λ4 ∗ LB(s

Bb, 1),
(3)

where LE represents the event classification loss and LB de-
notes the background classification loss, both of which are im-
plemented by the cross-entropy loss.

In our BAS loss, the first term is used to supervise the accu-
racy of event classification as in the general MIL-based WSSED
method, which ensures that ze has a high probability of be-
ing recognized as active sound events, while the second term is
leveraged to prevent ze from being misidentified as background
sounds. Furthermore, the third term forces zb to be indiscrim-
inate for all sound event classes, helping the event classifier to
perceive pure-background samples and suppress the activation
of background sounds. Lastly, the fourth term makes zb have
a high probability of being recognized as background sounds
and cooperates with other BAS loss terms to jointly guide the
pseudo separator and two aggregators to purify and aggregate
frame-level features of sound events and background sounds to
form ze and zb, respectively.

During the inference stage, since the event feature has been
purified by the pseudo separator and the event classifier has
been trained to recognize and suppress background sounds with
the help of our BAS loss, we only need to feed the frame-level
event feature into the event classifier to generate the final frame-
level prediction results.

3. Experiments and Results
3.1. Datasets

We evaluate our method on the two publicly available sound
event detection datasets: DCASE2017 task4 [24] and Ur-
banSED [23] datasets. The DCASE2017 task4 dataset “large-
scale weakly supervised sound event detection for smart cars”
is made up of a training subset with 51,172 audio clips, a valida-
tion subset with 488 audio clips, and an evaluation set with 1103
audio clips, including 17 sound events. The UrbanSED dataset
has 10 event labels within an urban setting, which contains a to-
tal of 10,000 soundscapes generated by the Scaper soundscape
synthesis library, divided into 6,000 training, 2,000 validation,
and 2,000 evaluation clips.

3.2. Baseline Models and Training Details

To evaluate the effectiveness and generalization of our BA-
WSSED, we apply our method to multiple baseline systems,
including CNN [20], CDur [21], CNN-biGRU [20], CNN-
Transformer [20] and HTSAT [22]. The CNN system is mod-
eled by a 9-layer CNN, which consists of 4 convolutional
blocks. The convolutional block includes 64, 128, 256 and 512
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Table 3: Ablation Study of our BAS loss.

Method AT-F1 Seg-F1 Event-F1

CNN biGRU-I [20] 0.625 0.564 0.193
CNN biGRU-E 0.633 0.566 0.196

Ours (loss1) 0.628 0.562 0.194
Ours (+loss2) 0.639 0.568 0.199

Ours (+loss2/3) 0.649 0.577 0.201
Ours (+loss2/3/4) 0.658 0.586 0.205

feature maps, respectively. For the CDur system, it consists of a
5-layer CNN followed by a bidirectional Gated Recurrent Unit
(GRU) with 128 hidden units. The CNN-biGRU system is mod-
eled by a 9-layer CNN and a bidirectional GRU with 256 hid-
den units and the CNN-Transformer consists of a 9-layer CNN
with one transformer block. HTSAT adopts the Swin Trans-
former [25] backbone with ImageNet-pretraining, where we use
3 network groups with 2, 2, 6 swin-transformer blocks for the
DCASE2017 task4 dataset while we only use two stages with
2, 2 swin-transformer blocks for the UrbanSED dataset.

In this work, we follow the training pipeline of the corre-
sponding baseline models and keep the aggregators [16] (in-
cluding event and background aggregators) consistent with the
corresponding baseline models for a fair comparison. Specifi-
cally, the CDur system adopts the linear softmax pooling func-
tion. The CNN system uses the max pooling function. The
CNN Transformer and HTSAT systems use the average pooling
function. The CNN biGRU system uses the attention pooling
function. The hyper-parameters are set as M = 60, λ1 = 1, λ2 =
λ3 = 0.3, and λ4 = 0.2. We use audio tagging F1 score (AT-F1),
Segment-F1 score (Seg-F1) and Event-F1 score [26] to evaluate
our method.

3.3. Results on DCASE2017 Task4

Experimental results on the DCASE2017 Task4 dataset are
shown in Table 1, where *-I indicates the instance-level strat-
egy, *-E denotes the embedding-level strategy, and *-BA repre-
sents our background-aware pipeline. It can be seen that our
BA-WSSED achieves significant performance boosts on var-
ious baseline models with different pooling functions (aggre-
gators) for both instance-level and embedding-level strategies,
especially on the AT-F1 and Seg-F1 metrics. The excellent
performance gains mainly benefit from the trait that our BA-
WSSED can perceive the unseen pure-background samples and
suppress the activation of background sounds, which makes the
model more discriminative between sound events and back-
ground sounds, thus classifying and localizing sound events
more accurately.

3.4. Results on UrbanSED

We also compare our BA-WSSED with previous approaches on
the weakly labeled UrbanSED corpus. As shown in Table 2,
our BA-WSSED also achieves consistent improvements com-
pared with the corresponding baseline models on the UrbanSED
dataset, which further demonstrates the effectiveness, robust-
ness, and generalization of our method.

3.5. Ablation Study

In this part, we discuss the influence of our BAS loss and the
selection of hyper-parameter settings. The experiments are car-
ried out on the DCASE2017 task4 dataset.

Results of each term of our BAS loss. To show the ef-

Table 4: Ablation Study of λ1, λ2, λ3, λ4 settings, and the num-
ber of attention maps M .

Method AT-F1 Seg-F1 Event-F1

HTSAT-I [22] 0.636 0.587 0.178
HTSAT-E 0.640 0.590 0.180

Ours (λ1=0.5) 0.656 0.595 0.182
Ours (λ1=1.0) 0.662 0.604 0.186

Ours (λ2=0.2) 0.661 0.602 0.184
Ours (λ2=0.3) 0.662 0.604 0.186
Ours (λ2=0.4) 0.659 0.601 0.182

Ours (λ3=0.2) 0.659 0.602 0.186
Ours (λ3=0.3) 0.662 0.604 0.186
Ours (λ3=0.4) 0.658 0.599 0.185

Ours (λ4=0.1) 0.661 0.602 0.185
Ours (λ4=0.2) 0.662 0.604 0.186
Ours (λ4=0.3) 0.659 0.601 0.184

Ours (M=40) 0.658 0.601 0.182
Ours (M=60) 0.662 0.604 0.186
Ours (M=80) 0.663 0.603 0.186

Ours (M=100) 0.662 0.604 0.187

fectiveness of each term in our BAS loss, we present ablation
results using CNN-biGRU system in Table 3. Ours (loss1) de-
notes that we use our BA-WSSED pipeline, but only includes
the term of loss1, i.e., λ1 ∗ LE in our BAS loss. Ours (+loss2)
represents that we add the loss2 term, i.e., λ2 ∗ LB based on
Ours (loss1). Ours (+loss2/3) means to add loss2 and loss3
terms, and Ours (+loss2/3/4) is in the same way. It can be seen
that only using the loss1 term harms the performance compared
with the baseline system. This is because in such a condition,
the event feature is only coarsely formed without any restric-
tions, which may undesirably contain excessive background
sounds or missing sound event parts. By combining loss2,
loss3, and loss4 step by step, our BA-WSSED achieves consis-
tent performance improvements, thus demonstrating the effec-
tiveness of our background awareness modeling for WSSED.

Results of the hyper-parameters λ1, λ2, λ3, λ4, and the
number of attention maps M . Here, we show the influences
of hyper-parameter selection using the HTSAT system in Table
4. Ours (*) means that we only change the setting of *, and
the rest of the settings are the same as the experimental best
settings, which we show in bold. We can see that different λ
settings would affect the results, but not too much. Besides,
when changing the number of attention maps M from 60 to
40, the performance has a comparatively large drop. When M
becomes larger, there is little performance gain. To save costs,
we finally choose M = 60 for our BA-WSSED.

4. Conclusions
In this paper, we focus on adding background awareness for
WSSED by proposing a BA-WSSED pipeline to suppress the
over-activation of background sounds, which can not only help
capture indistinct sound events but also distinguish sound events
from their frequently co-occurring background sounds, thus ef-
fectively reducing the sound event classification errors and lo-
calization bias. Experiments show that our BA-WSSED yields
significant performance gains compared to the general MIL-
based WSSED method on multiple datasets and can generalize
to various baselines.

1202



5. References
[1] A. Mesaros, T. Heittola, T. Virtanen, and M. D. Plumbley, “Sound

event detection: A tutorial,” IEEE Signal Processing Magazine,
vol. 38, no. 5, pp. 67–83, 2021.

[2] A. Mesaros, A. Diment, B. Elizalde, T. Heittola, E. Vincent,
B. Raj, and T. Virtanen, “Sound event detection in the dcase 2017
challenge,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 27, no. 6, pp. 992–1006, 2019.

[3] Y. Xin, D. Yang, and Y. Zou, “Audio pyramid transformer with
domain adaption for weakly supervised sound event detection
and audio classification,” Proc. Interspeech 2022, pp. 1546–1550,
2022.

[4] J. P. Bello, C. Mydlarz, and J. Salamon, “Sound analysis in smart
cities,” in Computational Analysis of Sound Scenes and Events.
Springer, 2018, pp. 373–397.

[5] R. Radhakrishnan, A. Divakaran, and A. Smaragdis, “Audio anal-
ysis for surveillance applications,” in IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics, 2005. IEEE,
2005, pp. 158–161.
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