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Abstract

In recent years, Audio Deepfake Detection (ADD) models
have shown promising results in intra-domain. However, they
do not perform well in cross-domain scenarios. This is mainly
due to the limited variety of domain types and attack methods
in training data, as well as insufficient research on hidden fea-
ture representation. To address these issues, we present W2V-
ASDG, a generalized ADD system including a self-supervised
representation front-end and a domain generalization backbone.
Furthermore, we try to learn an ideal feature space which aggre-
gates real speech and separates fake speech. Fake speech varies
significantly by different forgery methods, while real speech
varies less. In light of this, we further propose the aggrega-
tion and separation domain generalization (ASDG) method as
the back-end to learn a domain invariant feature representation.
Experiments show that our W2V-ASDG outperforms baseline
models in cross-domains and gets the lowest average equal er-
ror rates (EER) of 4.60%.

Index Terms: audio deepfake detection, self-supervised repre-
sentation, domain generalization, feature space

1. Introduction

With the rapid development of text-to-speech and voice con-
version, the adversarial technique of Audio Deepfake Detec-
tion (ADD) has attracted increasing interest. In current ADD
methods, different strategies such as manual features [1] and
Data Augmentation (DA) [2, 3] are frequently adopted, which
show promising results in intra-domain database testing [4, 5].
Nonetheless, these methods deteriorate in performance when
applied to cross-domain conditions [6]. This is primarily caused
by the following two reasons:

* The complexity of the target speech (codec, channel, noise,
etc.,) [7] and variety of the attack types may lead to misjudg-
ment of ADD model.

* Recent ADD methods lack of generalization and inter-
pretability of hidden representation. The existing methods
rely on deep backbone networks such as Resnet [8] and
LCNN [9], which may cause overfitting to the source domain.

To tackle the issue of performance degradation in cross-
domain, we first take advantage of wav2vec2 (W2V2), a self-
supervised model as front-end. W2V2 is trained on a large
amount of real utterances from different source domains with-
out any labels. The utilization of rich source domain infor-
mation enhances our ability to discriminate in complex cross-
domain scenarios (different codec, channel, noise, etc.,). Thus,
the attributes of hidden states and variations of value between
real and fake speech can help to set a discriminative class
boundary. Recent studies have been investigated the effect of
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self-supervised front-end [10] and perform well on both intra-
domains [11-13] and cross-domain [14, 15]. In our model, we
utilize W2V2-XLS-R [16] as the front-end to extract the feature
from raw audio as it is the largest version currently.

As we known, DA is a common strategy in most ADD
tasks, which is used to adapt the test speech scene by aug-
menting the speech environment. However, in real-world sce-
narios, there are various situations to consider. It’s inefficient
to add new bonafide or spoofed audio to the training data to
achieve better result. To overcome the challenge of gener-
alizing to an unseen target domain with limited source data,
Domain-Invariant Representation Learning (DIRL) techniques
have been proposed. The goal of DIRL is to reduce the repre-
sentation discrepancy between multiple source domains among
various source domains, ensuring domain invariance. In recent
years, DIRL strategies have been widely proven to effectively
combat the decline in anti-spoofing generalization performance
caused by illumination and camera changes [17-19]. Similar to
face forgery data, speech also has very large differences due to
different environmental noise, recording equipment, and decep-
tion attack methods. Therefore, It may be beneficial to intro-
duce DIRL strategies into the ADD task.

Based on the aforementioned analysis, we propose W2V-
ASDG, an ADD method with higher generalization ability
based on DIRL. Initially, we hypothesize that in an ideal dis-
criminative feature space, the data distribution of real speeches
should be clustered into a single cluster regardless of domains,
while the fake one should be more scattered. This is due to the
fact that although various devices or channels may have some
impact on both genuine and spoofing speech, the divergent at-
tack types have a greater impact on the variation of magnitude
for spoofing speech. Then, to construct the feature space, we
aggregate the real speech distribution through a single-side ad-
versarial domain discriminator and separate the fake speech by
triplet mining. The input of the domain discriminator includes
only real datasets rather than fake ones to make the features of
real speech from different domains undistinguishable. Simulta-
neously, the triplet mining technique can effectively discrete the
spoofing features and aggregate the real features.

The main contributions of this work are as follows:
* We propose a well-generalized ADD model, W2V-ASDG,
which comprises a large-scale self-supervised front-end

W2V2-XLS-R, and a domain generalization backbone
ASDG.

* We introduce an ideal domain-invarient feature space recog-
nition of the real and fake speech feature distribution. ASDG
method is designed to achieve that goal, which improves in-
terpretability.

¢ Numerous experiments are organized in harsh conditions:
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Figure 1: The whole architecture of our proposed W2V-ASDG which include W2V2-XLS-R front-end and ASDG back-end. The red and
green lines represent the forward propagation routes of real and fake speech respectively.

cross-language and noisy dataset. Experiments show that our
model outperforms baseline models in cross-domains and get
the lowest EER for 4.60%, which can verify the generaliza-
tion ability of our model on unknown target domains.

2. Proposed Method

The framework of our proposed system for ADD is depicted in
Figure 1. Three different domains are used to enhance the diver-
sity of training data. At first, W2V2-XLS-R is utilized to extract
the feature of raw audio. Then, LCNN and transformer block
as a backbone to make a binary classification decision. To com-
plete an ideal feature space, a single-side adversarial domain
discriminator is proposed to identify which domain the feature
belongs to. In this way, we can aggregate the real speech re-
gardless of which domain the speech belongs to. Furthermore,
to separate the fake feature while aggregating the real one, the
triplet mining method is added to achieve the goal. Finally, the
overall loss is integrated to optimize the network.

2.1. W2V2-XLS-R front-end

In the left-side of Figure 1, W2V2 based front-end is trained by
solving a contrastive task over a masked feature encoder. All
of the speech signals from three domains are first processed by
the feature extractor which is composed of seven convolutional
neural network (CNN) layers. Then, the Transformer network
which is composed by 24 layers, 16 attention heads, and 1024
embedding size are used to obtain context representations.

In the training phase, the feature extractor representations
are discretized to a quantized vector to represent the targets
in the objective. In practice, we employ the above steps by
Hugging face version of wav2vec2-XLS-R-300M' and freeze
the weights of front-end. The front-end model is pre-trained
with 436k hours of unannotated genuine speech data in 128 lan-
guages using a contrastive objective. As a result of pre-training,
the last hidden states from the transformer can represent the
genuine speech contextualized information.

Thttps://huggingface.co/facebook/wav2vec2-xls-r-300m
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2.2. ASDG back-end
2.2.1. Backbone

In order to obtain an ideal feature space from a limited dataset,
a well-performing feature generator is essential. In feature gen-
erator, we use the light convolution network (LCNN) and trans-
former block to extract the feature space from the source do-
main speech. The details of LCNN structure is same as [9]. To
capture the relations between adjacent elements on time series,
a single SpeechFormer block are added after LCNN. The differ-
ence between SpeechFormer block and standard transformer is
that the multi-head attention utilizes a window to limit the com-
putation to a small scope of adjacent tokens, which can greatly
relieve the computational burden [20].

2.2.2. Domain classifier

In an ideal feature space, the distribution of real speech is ag-
gregated regardless of domain. Thus, a single-side adversarial
domain discriminator with Gradient Reverse Layer (GRL) [21]
is proposed. As we can see in Figure 1, the domain discrim-
inator only discriminates the feature from real domains. Let
p(Xr) denotes the distributions of real feature and Yp denotes
the domain of X,.. The adversarial loss function of the domain
discriminator is defined as follows:

minmax Lede (G, D) =
D G

3

— Eonp(x,)y~vp 9P (y = d)log (D (G())
d=1
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where d denotes the domain label. Minimizing loss in discrim-
inator and maximizing loss in the generator are simultaneous.
The feature generator is trained to learn a robustness feature to
spoof the domain discriminator in order to maximize Lyqq. In
the meantime, the discriminator is trained to identify the feature
domain by minimizing. To achieve the synchronous goal, GRL
is added to make the discriminator unable to identify which do-
main the real feature originates from. GRL doesn’t work in the
forward propagation. Instead, GRL layer reverses the gradient
by multiplying negative dynamic coefficients in the backward
propagation to make the discrimination task difficult. As the
number of training iter increases, the coefficient decreases from



0 to -1 so that the model will focus on optimizing the classifier
loss at the beginning of the training process.

2.2.3. Triplet mining

Owing to the diversity of the spoofing method in ADD, the
distribution of fake speech should be dispersed and far from
the distribution of real speech in an ideal speech feature space,
which makes discriminating straightforward and quick to learn
categorization boundaries. Moreover, the scattered speech fea-
tures also facilitate the subsequent identification of a specific
spoofing method. Therefore, the triplet mining [22] method is
ideal for the aforementioned causes since it can aggregate the
bonafide speech feature while dispersing the spoofing ones.

N
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where xf, 2, 7' represents the anchor sample, positive sam-
ple, and negative sample, respectively. The first term of Equa-
tion 2 computes the euclidean distance between the anchor and
positive sample and the second term calculated the distance be-
tween the anchor and the negative one. By minimizing Ly,
the distance between the anchor and the positive sample will
get closest while the anchor will be further away from the neg-
ative sample. we set o to 0.1 which is a margin value.

2.3. Total loss

In conclusion, the overall loss function L;; is described in
Equation 3.

Lan = Leas + )\lLada + )\2Lt'ri> (3)

where L. utilize Binary Cross Entropy (BCE) to classify the
feature in real or fake two categories. It’s worth noting that
weight normalization is used in fully conected layer (FC) of
classifier which is widely utilized in face recognition [23,24] to
maintain the stability of the gradient descent and enhance the
judgment of binary classification. A; and Az are set to 0.1 to
balance the proportion of different loss functions.

3. Experiment
3.1. Database

To effectively employ DIRL strategy, the training data must en-
compass a wealth of attack types and be sourced from various
domains. Thus, we select ASVspoof2019LA [25], WaveFake
[26], and FakeAVCeleb [27] as our traing datasets. Specifically,
ASVspoof2019LA is generated by 11 TTS and 8VC spoofing
algorithms from VCTK [28]. WaveFake is an audio Deep-
Fake dataset created by 7 spoofing methods from LIspeech [29].
FakeAVceleb is a multi-modal DeepFake dataset, the audio part
is generated from Voxceleb [30]. All of the training data in-
cludes 26065 real utterances and 212035 fake utterances.

To test the generalization ability of our model, we try our
best to collect the publicly available ADD datasets for evalua-
tion. IWA [6], ASVspoof2021DF [31], JSUT [32], FAD [33]
are used to evaluate our model. For FAD, we random se-
lect eight attacking type FC1-FCS8, giving the following con-
ditions: FC1-Lpcnet, FC2-stylegan, FC3-tacohifi, FC4-fasthifi,
FC5-wavenet, FC6-straight, FC7-hifigan, FC8-pwg. FN1 and
FN2 is the noise condition of FC1 and FC2. The test set con-
dition is same as [33] which concludes 3500 spoofing and 3500
genuine utterances from the original domain.

I
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3.2. Implementation details

All training audio files are resampled to 16kHz and trimmed
or padded to 4s. For baseline Rawnet2 and AASIST, the input
is the raw waveform of about 4s (64000 samples). For base-
line XceptionNet, Mesolnception, and Resnetl8, we use 80-
dimensional LEFCCs with a shape of (80,404) as front-end. In all
experiments, no DA techniques are used. During training, the
parameters of W2V2 front-end are frozen. After front-end, we
can get the last hidden states vector with shape of (201, 1024)
as input of back-end. We use a fold setting similar as [34] but
use 5 fold to cover all attack types. In each fold, we trained 5
epochs with validation. We divide the training set into 80% and
the validation set into 20% and keep the attack type in validation
of each fold not repeat.

4. Results and discussions
4.1. Feature experiments

To test the effect of single domain and cross-domain for dif-
ferent front-ends, we first train a single LCNN backbone
without DIRL or DA strategy on ASVspoof2019LA train
subset and test on ASVspoof2019LA evaluate subset, IWA,
ASVspoof2021DF, FC1, and FN1. The results are shown in
Table 1. W2V2 outperforms manual features for unknown do-
mains in situations with small-scale data and limited attacks.
Especially for FC1, despite FC1 is an invisible attack type for
the training set and a cross-language evaluation, W2V2 can still
achieve an EER of less than 5%. Manual features may perform
well on 19eval dataset, but they encounter a sharp decrease in
the out of domain. Thus, we utilize the W2V?2 as our front-end.

Table 1: EER(%) results for Feature expreiments. All systems
are trained with ASVspoof2019 LA train subset.

Feature | 19LAeval | IWA | 21DF | FC1 | FN1
LFCC 1.82 43.12 | 27.83 | 32.91 | 34.40
W2v2 0.63 24.50 | 8.07 | 4.48 | 26.85

4.2. Out of domain experiments

To improve the generalization ability of ADD model, we use
ASVspoof2019LA, WaveFake, and FakeAVCeleb three differ-
ent datasets as our training data. The EER of the baseline and
our model has shown in Table 2. W2V-ASDG represents our
proposed method and achieves the best performance in 4.60%
average EER. For IWA dataset, the original paper proposed that
the current ADD model lacks generalization, and their model
has a test EER for more than 40%. In our practice, even if
training set is expanded to three domains, the model which uti-
lizes handcrafted features and raw audio as front-end does not
perform well on IWA. W2V2 front-end effectively reduces the
EER to a single-digit level. For ASVspoof2021 DF dataset, ow-
ing to different compression, bitrate, and origin domain. The
top of team only achieves 15.63% EER for DF subset. To the
best of our knowledge, our proposed model with 2.22% EER is
the lowest EER reported for the ASVspoof2021 DF database.
For FAD and JSUT databases, our proposed ASDG method
with W2V2 front-end gets the lowest EER in each condition.
It is noteworthy that our training data only included English
datasets, while the FAD and JSUT databases consist of Chinese
and Japanese datasets respectively, creating a cross-language



Table 2: EER(%) results for out of domain.

Model Features| IWA [21DF|JSUT| FC1 | FC2 | FC3 | FC4 | FC5 | FC6 | FC7 | FC8 | FN1 | FN2 | AVG
XceptionNet [35] | LFCC [60.29(31.94|26.43| 8.34 |18.97| 2.71 |11.48|30.45|37.74|12.57| 2.08 |49.48|35.02|25.19
Mesolnception [36] | LFCC (66.10|34.85(21.20{14.17| 8.68 | 2.54 |19.34|24.60|46.71|27.20| 2.17 |44.65|34.77|26.69
Resnet18 [37] LFCC |62.14|29.78|24.10(10.65| 9.48 | 6.02 | 7.05 [19.65|30.14| 9.94 | 3.68 |47.97|36.62|22.86
Rawnet2 [4] Audio |32.74|21.53|47.60(28.25|29.57|33.77|63.31|38.31(49.14|31.48|36.33|33.06|32.48|36.74
AASIST [5] Audio |19.38]12.94| 6.95 | 4.25 | 7.22 |14.14|10.80| 7.25 [24.60{18.94| 9.05 |28.65|29.85|14.92
ASDG LFCC |52.95|37.80|12.14| 1.82 | 6.25 | 1.92 | 6.77 | 7.56 [40.98| 5.62 | 1.55 |40.92|35.89|19.40
ASDG (w/o) tri&ada| W2V2 | 7.70 | 3.99 | 6.25 | 3.01 | 1.91 | 3.02 [10.82| 1.40 | 5.20 |11.05| 1.88 |27.96|18.85| 7.93
ASDG (w/o) tri W2V2 | 6.45|8.68 | 520 |1.83|135|1.86|4.31|1.15|3.12|3.71 | 1.34 |{19.97|15.22| 5.71
ASDG (w/o)ada | W2V2 | 6.66 | 3.28 | 5.14 | 1.68 | 1.82 | 1.94 | 4.14 | 1.34 | 2.89 | 3.68 | 1.22 |19.23]16.17| 5.32
W2V-ASDG W2V2 | 516 | 2.22 | 432 | 1.48 | 1.25 | 1.74 | 3.79 | 1.01 | 2.11 | 3.62 | 1.14 |17.54|14.36| 4.60

source real X X target real visualize the distribution of different features using T-SNE [38].
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Figure 2: Visualization of the feature space. The graphs other source domains which may allow us to conduct a study on

of (a), (b), and (c) exhibit the T-SNE visualization of
ASDG (w/o) tir&ada, ASDG (w/o) ada, ASDG respectively.
Different colors indicate features from different domains:
red=ASVSpoof2019LA, green=WaveFake, blue=FakeAVCeleb,
vellow=Target. Different shapes represent different categories
information: cross=real, point=fake.

evaluation scenario. Among FC1-FC8, FC1-FC4 are spoofing
methods that were not seen in the training database, yet the
ASDG method still obtained consistency improvements. For
N1-N2, the traditional feature extraction method (LFCC) was
not able to clearly distinguish between real and fake speech un-
der noise disturbance, while the W2V2 features showed obvious
anti-noise ability even without DA.

4.3. Ablation Study

To verify the importance of the triplet mining and the single-
side adversarial learning, the ablation study is added in the bot-
tom of Table 1. ASDG (w/o) tir&ada represents the ADD sys-
tem only using a feature generator using a classifier and BCE to
identify the speech. ASDG (w/o) tri and ASDG (w/0) ada adopt
adding single-side adversarial alone and adding triplet mining
alone, respectively. Compared to the ASDG (w/o) tir&ada,
the adversarial or triplet mining method can reduce the average
EER by about 2%. W2V-ASDG is our proposed model which
has the lowest EER of 4.60%.

4.4. Visualization Of The Feature Space

To analyze the feature space learned by our model and verify the
effectiveness of the triplet mining and adversarial learning, we
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deepfake attribution.

5. Conclusions

In this paper, we introduce a generalized ADD system that in-
corporates a self-supervised front-end and a backbone utilizing
the ASDG strategy. Specifically, we use W2V2-XLS-R as the
front-end to extract the hidden states of the raw audio. Then,
a modified version of LCNN as the backbone of the network
is used to distinguish real or fake. In addition, Triplet mining
method is designed to separate the fake speech and aggregate
the real speech. Meanwhile, the single-side domain discrimina-
tor makes the real speech from different domains undistinguish-
able for the further aggregation of real speech. In this way, we
learn a self-supervised domain-invariant feature representation
to improve the generalization ability.

Our ADD model differs from current models as it priori-
tizes classification performance on the target domain rather than
intra-domain performance. We expect to generate an ideal ADD
feature space in a limited dataset and achieve that goal by vi-
sualization of the feature space. The test results reveal that
our proposed model has the best performance across all con-
ditions. Future work will concentrate on more application of
DIRL method and transfer learning for ADD task.
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