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Abstract 
The wideband or super wideband speech is one of the most 
prominent features in real-time communication services, with 
higher resolution spectrum. However, it requires higher 
computing expenses. In this paper, we introduce the Penguins 
codec, based on a multi-mode neural speech coding structure 
that combines sub-band speech processing and applies different 
strategies from the low band to the high band. Especially, it 
refers to deep generative networks with perceptual constraint 
loss functions and knowledge distillations to reconstruct 
wideband components and bandwidth extension to generate 
artificial super wideband components. The method results in 
high-quality speech at very low bitrates. Several subjective and 
objective experiments, including ablation studies, were 
organized, and the results proved the merit of the proposed 
scheme when compared with traditional coding schemes and 
state-of-the-art neural coding methods. 
Index Terms: speech coding, quadrature mirror filter, deep 
generative model, bandwidth extension 

1. Introduction 
Speech coding is one of the fundamental technologies in voice 
telephony and real-time communication (RTC) services. It 
refers to speech feature estimation using audio signal 
processing and feature quantization by general data 
compression methods at the sending side; the received features 
are extracted and used to synthesize the speech at the receiving 
side. It improves the customers’ experience in miscellaneous 
RTC applications (mobile telephony, social chatting, etc.) and 
boosts technology improvement in the meantime. 

The PCM digital telephony codec, e.g., ITU-T G.711 [1], is 
a narrow band waveform-based technique that adopts 
logarithmic companding laws to express each sample by 8 bits, 
and this serie extends to support 16 kHz sampling rate later [2]. 

The linear prediction coding (LPC) is another approach 
widely applied in speech coding, including coded-excited linear 
prediction (CELP) [3]. The CELP is composed of a linear 
prediction stage that models the spectral envelope of the speech 
and a codebook-based excitation model that expresses the 
residual of the LPC. At the encoder, the CELP performs a 
search procedure with perceptually weighted constraints to 
obtain the best parameters, and related index of codebooks. At 
the decoder, both excitation and LP coefficients are obtained 
from the received index of codebooks; then, the speech is 
reconstructed by LP synthesis filtering. The CELP has been 
widely adopted by different international standards [4-6]. 

Compared to PCM and LPC approaches, the transform 
coding is another branch of speech coding that always 
transforms the speech into the frequency domain; then, the 
frequency coefficients are divided into multiple bands. For each 
band, the average power is calculated as the spectrum envelope. 
The spectrum envelopes and the normalized coefficients are 
quantized and compressed by entropy coding. At the decoder, 
the received spectrum envelope and normalized coefficients are 
combined to generate frequency coefficients, and then the 
inversed transform is applied to reconstruct the speech. It is 
noted that some psychoacoustic principles are used to improve 
coding efficiency [7]. 

Further, the super wideband (SWB) speech coding was also 
investigated due to the business requirements for higher 
resolution of the speech in RTC services. Such SWB methods 
combine LPC, transform coding, sub-band coding [8], and 
bandwidth extension [9-10] to realize high-efficiency coding of 
SWB speech signals. 

The foundation of the above methods includes generalized 
speech analysis, processing, and synthesis (SP-based). In recent 
years, the data-driven method has also become a research focus 
in speech coding. The involvement of so-called deep neural 
networks (neural-based) in speech coding can bring out better 
quality than SP-based approaches when the bitrate is less than 
8kbps. 

The advance of the generative model realizes waveform or 
parametric coding by using neural synthesis [11]. Later, the 
LPCNet demonstrates how to combine linear prediction and 
recurrent neural networks to synthesize the speech with 
moderate computational consumption [12]. Recently, the Lyra 
feeds quantized log Mel spectra to WaveGRU and outperforms 
SP-based methods at low rates [13]. Another neural-based 
approach, the so-called end-to-end structure, realizes the 
“encoder-quantizer-decoder” networks, where the encoder 
compresses the speech signal and extracts the low-dimensional 
latent features, and the decoder recovers the signal from the 
quantized features [14-15]. 

Among neural-based methods, there are two problems. 
Firstly, the absolute speech quality is not as good as the 
performance of SP-based methods at high bitrates. Secondly, 
quantized noise and spectral artifacts are produced when we 
reduce the complexity of generative models for real-world use. 

 To resolve the above problems, we propose the Penguins 
codec with a multi-mode architecture in which the WB core is 
processed by a novel encoder-quantization-decoder model and 
the SWB part is processed by a bandwidth extension approach. 
The Penguins codec incorporates a novel multiscale end-to-end 
structure combining the light-weight deep generative networks
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Figure 1: Flowchart of the Penguins codec. 

with perceptual loss functions and knowledge distillation 
strategies to efficiently preserve the quality of the reconstructed 
speech. Additional post-filters are also applied both in the low 
band and the high band to improve the quality. The subjective 
and objective experiments prove that the method proposed 
herein can provide high quality at very low bit rates with 
moderate computing consumption. 

The following paragraphs are organized as follows: We 
introduce the methods in Section 2. Then we describe the 
training procedures and strategies in Section 3. We present the 
subjective and objective experiments including the ablation 
study in Section 4. The complexity analysis is discussed in 
Section 5. Finally, the conclusions are depicted in Section 6. 

2. Method  
In this section, we describe the whole process of the Penguins 
codec step by step. As illustrated in Fig. 1, the scheme is divided 
into two parts: Encoder and Decoder. At the Encoder, the input 
SWB signal is processed by a QMF analysis filter to generate 
the low band and high band signals; the low band signal is then 
processed by proposed deep generative networks (Enc-DGN) to 
extract the feature vector at the low band, while the high band 
signal is processed by a bandwidth extension encoder (Enc-
BWE) to extract the feature vectors at the high band. Both 
feature vectors in the low band and the high band are quantized 
and coded into the bitstream. The Decoder is the inverse 
procedure of the Encoder in which the received feature vectors 
are sent to the deep generative networks (Dec-DGN) and 
bandwidth extension decoder (Dec-BWE) to reconstruct the 
low band and high band signals, respectively. Finally, the QMF 
synthesis filter is used to reconstruct the final signal. We will 
introduce the whole procedure in the following paragraphs. 

2.1. Encoder of the Penguins codec 

The SWB input, denoted by 𝑥 , is a 16-bit PCM sampled at 
32000Hz. Since the frame length is set to 20ms, the number of 
bins of 𝑥 is 640.  

In this paper, we refer to the so-called 2-band QMF filter 
[16] to split the SWB input into two sub-band signals, 𝑥!" and 
𝑥#", and the number of bins of 𝑥!" and 𝑥#" is 320. 

2.1.1. Enc-DGN at low band 

As mentioned above, a multi-mode scheme is proposed herein 
by considering the redundancy of the speech from low 
frequency to high frequency. Due to the importance of the WB 
components, we design a block (denoted by Enc-DGN) 
properly based on a light-weight deep generative network and 
apply it to the low band signal, 𝑥!" , to extract a low-
dimensional feature vector at low band, 𝜃!".  

As illustrated in Figure 2, the Enc-DGN is composed of 2 
convolution layers, a pre-processing layer, and 4 layers of 
EncBlock with specific structure. 

For each frame of 320 samples, the first convolution layer 
extracts the internal information and outputs multi-channel 
features. In this paper, the number of channels of the Enc-DGN 
is set to 16. 

The pre-processing layer includes a casual convolution 
layer following a ReLU activation and average pooling by a 
downsampling factor of 2. It is noted that the pre-processing 
layer does not change the number of channels (i.e., 16). 

There are four EncBlock, and each EncBlock is composed 
of three dilated residual units with a dilation rate 𝑑 = {1,3,9}, 
and an average pooling by a pre-defined downsampling factor. 
The kernel size of all convolutional layers is 3. Each EncBlock 
increases the number of channels by 2; therefore, the number of 
the output channel of the 4th EncBlock is 256. The 
downsampling factor for the above four EncBlock is =
{2,4,4,5}, resulting in a 256 × 1 feature expression. 

Finally, a convolution layer with 𝑡𝑎𝑛ℎ	(∙) activate function 
is applied to obtain an M-dimensional feature vector, 𝜃!" , 
where 𝑀 is the final number of channels. The 𝜃!" is in [-1.0, 
1,0], and the value of M is dependent on the target bitrate. 

2.1.2. Enc-BWE at high band 

As the second part of multi-mode coding, we refer to traditional 
frequency domain BWE (FD-BWE) to generate an artificial 
high band component. The general idea of FD-BWE is to 
replicate the selected spectrum patches from the low bands to 
the high band; the local spectrum envelopes are calculated and 
transmitted to the decoder to adjust the spectrum in the high 
band. 

In this paper, we transform the 𝑥#" to the MDCT (Modified 
Discrete Cosine Transform) domain [17]. Then, we divide the 
SWB spectrum into eight sub-bands and calculate the average 
power in each sub-band in the high frequency ranges as the 
spectrum envelopes. Finally, we convert the spectrum 
envelopes into the logarithm domain, denoted by 𝜃#". 

2.1.3. Quantization and entropy coding 

Each component in 𝜃!"  is scalar quantized by searching the 
nearest label in pre-defined codebooks with 11 embeddings 
uniformly distributed between -1.0 and 1.0. The number of the 
channel of 𝜃!", denoted by 𝑀, is determined by the assigned 
bitrate. Since the theoretical number of bits in each frame is 
(−1 ∗ 𝑀 ∗ log 2 > $

$$
?), we set the M by 34 to make the bitrate 

less than 6 kbps for WB core. Then, we implement the entropy 
coding by preparing the probability distribution function of the 
embedding in each channel, separately.  

Meantime, each of the eight logarithm spectrum envelopes 
in the high band, 𝜃#", is quantized with a codebook with 32 
components and coded in 5 bits directly. Therefore, the rate for 
the high band is 2 kbps. Consequently, the total rate of the SWB 
coding could be less than 8 kbps in the proposed method. 
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Figure 2: Structure of Enc-DGN and Dec-DGN. 

2.2. Decoder of the Penguins codec 

For each frame, we extract all parameters from the bitstream 
and obtain the quantized parameters, i.e., 𝜃@!" and 𝜃@#". Then, 
we reconstruct the sub-band signals, respectively. 

2.2.1. Dec-DGN at low band 

As illustrated in Figure 2, the Dec-DGN is composed of 2 
convolution layers, 4 layers of DecBlock, and a post-processing 
layer. The Dec-DGN is a mirror version of the Enc-DGN with 
similar structures. To reduce the complexity of the decoder, we 
apply the repeat operations in upsampling layers of Dec-DGN, 
which is different from the so-called transpose convolution 
commonly applied in previous works.  

Additionally, a post-filter consisting of a 10th-order pole-
zero filter and a first-order all-zero filter is applied in the 
inference phase to strengthen the formant structures of the 
speech [18]. The transfer function is defined by 

               𝐻%&'()*+,(𝑧) =
$-∑ /!0"!#

!$%
$-∑ &!0"!#

!$%
∗ (1 + 𝜇𝑧-$),            (1) 

where 𝜇 is 0.15.  

2.2.2. Dec-BWE at high band 

Given the reconstructed low band signal by Dec-DGN, 𝑥E!", we 
implement the MDCT transform to obtain the spectrum in the 
low band. Then, we calculate the spectrum envelopes in the low 
band to obtain the normalized MDCT coefficients. 

The normalized MDCT coefficients in the low band are 
replicated to generate artificial coefficients in the high band. 
Then, eight spectrum envelopes extracted from the bitstream, 
𝜃@#", are applied to adjust the energy in the high band. 

To avoid musical noise from the extra harmonic opponents 
replicated from the low band, a spectrum whitening process is 
added. Additionally, a 2-order IIR slope filter is applied to 
attenuate the spectrum in the SWB range, which is used to 
improve the subjective experience. The parameters of the IIR 
filter are listed in Table 1. 

Then, the inversed MDCT transform is applied to obtain the 
high band signal, 𝑥E#". 

Finally, a QMF synthesis filter is implemented to generate 
the speech at 32000 Hz sampling rate, 𝑥E, by referring to the 
reconstructed sub-band signals, 𝑥E!" and 𝑥E#". 

Table 1: Parameters of 2-order IIR slope filter. 
  Paramters 
Numerator  0.5690, 1.1381, 0.5690 
Denominator 1.0000, 0.9428, 0.3333 

3. Dataset and training strategies 

3.1. Training dataset 

The clean speech in the training dataset is mainly derived from 
LibriTTS [19], DNS Challenge [20] and private datasets. In 
addition, we also add some noise speech from DNS Challenge, 
and we also refer to MIR-1k [21] and FMA[22] datasets to add 
the music utterances in the training dataset. It should be noted 
that we only trained the model with English and Mandarin 
utterances. All utterances are resampled at 16 kHz. 

3.2. Training strategies 

The generator-discriminator strategy is adopted in our training 
procedure. The generator is composed of the Enc-DGN and 
Dec-DGN structures, and the weights of the generator are 
updated according to the training loss function that will be 
introduced in Section 3.3. 

Our adversarial training framework is based on the multi-
resolution STFT-based (MR-STFT) discriminators with 6 
different scales with FFT points of {60, 120, 240, 480, 960, 
1920}. Each discriminator, composed of seven 2D convolution 
layers with a kernel size of {3, 3}, takes the logarithmic 
magnitude spectrum, and all the spectrums are concatenated as 
the input. Weight normalization and LeakyReLU are applied 
sequentially after each 2D convolution layer except the last one. 

As mentioned before, some low-complexity factors are 
considered both in Enc-DGN and Dec-BGN. To further 
improve speech quality, we also append an additional GAN-
knowledge distillation (KD) algorithm after the adversarial 
training stage, denoted by GAN-KD. We pre-train a high-
computational complexity model as the teacher, {𝐺1; 𝐷1} , 
which transfers the information to the proposed model (student 
model), {𝐺2; 𝐷2} with GAN-KD. During the distillation stage, 
we calculate the distillation loss by evaluating the distance 
between the intermediate outputs of the teacher model and the 
student model. 

3.3. Training loss functions 

The training loss functions at the GAN stage include prediction 
loss, adversarial loss, and feature match loss. 

The prediction loss is used to evaluate the loss of the 
reconstructed spectrum and is composed of a multi-resolution 
short-time Fourier transform (STFT) loss and a perceptual 
constraint loss. For the multi-resolution STFT loss, we try to 
minimize the spectral convergence loss and the L1 distance in 
the logarithmic magnitude spectral domain as below 

ℒ3(𝑋) = ∑ Llog(𝑋') − log	(𝑋@')L$ +
‖5&-56&‖'
‖56&‖''  ,            (2) 

As the second part of prediction loss, some perceptual 
constraints are adopted to preserve the accuracy of the valleys 
of the harmonics in the predicted speech (like the perceptual 
weighting in the CELP scheme). In this paper, we convert the 
STFT spectrum of the predicted and target signal into the 
equivalent rectangular bandwidth (ERB) [23] and calculate the 
average energy of each ERB. Then the perceptual loss is 
obtained by 

ℒ78(𝑋) = L𝑃89"(𝑋) − 𝑃89"N𝑋@OL$,                               (3) 

where the 𝑃89"(𝑋) and 𝑃89"N𝑋@O are the average energies in the 
ERB of the target and predicted signal. 

In addition, we also append the adversarial loss, ℒ&:;, and 
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feature match loss, ℒ<=, which are commonly used in previous 
works. 

The overall generator loss is a weighted sum of the above 
loss terms 
     ℒ> = 𝜆2 ∙ ℒ2 + 𝜆78 ∙ ℒ78 + 𝜆&:; ∙ ℒ&:; + 𝜆<= ∙ ℒ<=,       (4) 

The training loss function at GAN-KD stage is defined by 

ℒ?@ = 𝜆> ∑ L𝑂+
>( −𝑂+

>(L$+ + 𝜆@ ∑ L𝑂+
@( −𝑂+

@(L$+ ,      (5) 

where 𝑂+A is the i-th layer of the model Θ ∈ {𝐺1; 𝐷1; 𝐺2; 𝐷2}. 

3.4. Training configurations 

We train the models for 2000000 steps with the AdamW 
optimizer and the ExponentialLR scheduler. The batch size is 
set to 16. Each clip is randomly selected for 2 seconds for 
training. 

Empirically, the weights U𝜆2, 𝜆78 , 𝜆&:;, 𝜆<= , 𝜆> , 𝜆@V are set 
to {1, 2, 1, 20, 30, 10}.  

4. Evaluations and discussions 

4.1. Objective evaluation 

We refer to the ITU P.863 [24] as the objective evaluation 
metric. Given the reference and degraded signals, the P.863 
outputs a predicted Mean Opinion Score (MOS). As the 
successor of PESQ [25], the P.863 provides two operational 
modes, in which the SWB mode supports quality evaluation of 
WB and SWB speech on a single scale, and the MOS score 
predicted is between 1.0 and 4.75. 

The test set is from the ITU-T P.501 database [26] which is 
not used for training the proposed method. There are eight 
different languages, and each language contains two male and 
two female utterances; therefore, 32 utterances are selected. 

We employ the OPUS codec and state-of-the-art open-
source neural codecs (i.e., Lyra2 [27] and Encodec [28]) as the 
anchor systems to evaluate the performance of the proposed 
method by comparing the average MOS by P.863 SWB mode. 

We illustrate the P.863 SWB scores in Figure 3, including 
scores for WB codecs (blue) and SWB codecs (green) at 
different bitrates. We observe that the proposed Penguins codec 
outperforms OPUS and neural codecs within similar bitrates, 
not only in WB but also SWB parts. Among the three systems 
related to the proposed methods, adding the perceptual 
constraint loss function (*6kbps_wiPE) and GAN-KD 
(*6kbps_wiPE&KD) can obtain incremental improvement. 

4.2. Subjective listening test 

We also perform a crowdsourced subjective listening test 
according to the ITU-T P.808 recommendation [29]. We divide 
the listening test into WB and SWB parts, respectively. Both 
parts refer to the same SWB clean reference speech utterances, 
and the Degradation Category Rating (DCR) is selected to rank 
the quality. There are 12 speech utterances in Chinese, and we 
invite 24 native listeners to participate in the listening test.  

The listening test results are illustrated in Figure 4. The 
subjective quality of proposed Penguins codec is better than 
OPUS and other neural codecs at low bitrates, which is 
consistent with objective evaluation results. Furthermore, the 
subjective MOS of the Penguins codec is also comparable to 
that of OPUS at high bitrates, which demonstrates the excellent 
performance of the Penguins codec. 

 
Figure 3: Objective evaluation results. 

 
Figure 4: Subjective listening test results. 

5. Complexity analysis 
We compare the real-time factor (RTF) over different neural 
codecs according to a single thread implementation in the 
MacBooPro 2019 (i7 2.6GHz), and the RTF results are listed in 
Table 2. It is observed that the Penguins codec proposed in this 
paper is better than Encodec in terms of RTF. Meanwhile, the 
complexity of Penguins codec is also comparable to Lyra2. 
Therefore, we can conclude that the proposed method in this 
paper is sufficient to fulfill the real-time services. 

Table 2: Real time factor (RTF) of neural codecs. 
  Encoder Decoder 
Lyra2@9.2kbps  0.015 0.034 
Encodec@12kbps 0.103 0.094 
Penguins@6kbps 0.032 0.028 

6. Conclusions 
In this paper, we propose the Penguins codec with a multi-mode 
neural speech coding scheme with high-quality reconstruction. 
It includes a WB core based on encoder-decoder structures with 
deep generative networks and SWB reconstruction based on 
frequency domain bandwidth extension. Especially, we design 
the training strategies properly with proposed perceptual 
constraint loss and knowledge distillations to improve the 
performance of the GAN architecture. Both objective and 
subjective experiments prove the method proposed in this paper 
can outperform traditional and neural codecs at very low 
bitrates and be comparable to the traditional codec at high 
bitrates. Especially, we provide the ablation experiments to 
verify the benefits of different strategies adopted by the 
Penguins codec. The empirical results in computing efficiency 
also indicate the Penguins codec can fulfill the requirement for 
real-time communications. Future work includes further quality 
improvement for diverse RTC applications by investigating 
novel deep neural networks and perceptual loss controls. 
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