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Abstract
While state-of-the-art Text-to-Speech systems can generate nat-
ural speech of very high quality at sentence level, they still
meet great challenges in speech generation for paragraph /
long-form reading. Such deficiencies are due to i) ignorance
of cross-sentence contextual information, and ii) high com-
putation and memory cost for long-form synthesis. To ad-
dress these issues, this work develops a lightweight yet effec-
tive TTS system, ContextSpeech. Specifically, we first design
a memory-cached recurrence mechanism to incorporate global
text and speech context into sentence encoding. Then we con-
struct hierarchically-structured textual semantics to broaden the
scope for global context enhancement. Additionally, we inte-
grate linearized self-attention to improve model efficiency. Ex-
periments show that ContextSpeech significantly improves the
voice quality and prosody expressiveness in paragraph reading
with competitive model efficiency. Audio samples are available
at: https://contextspeech.github.io/demo/

Index Terms: Text-to-Speech, Contextual Modeling

1. Introduction
Deep learning is powerful for speech representation learning
and has shown great results on Text-to-speech (TTS) tasks [1,
2]. Representative neural network-based acoustic models in
TTS evolve from autoregressive structures (e.g., Tacotron [3,
4], Deepvoice [5], TransformerTTS [6]) to non-autoregressive
frameworks (e.g., FastSpeech [7, 8], GlowTTS [9]) to achieve
high quality generation efficiently. Recent end-to-end TTS
models [11, 12] develop the framework converting text to wave-
form directly without relying on an external vocoder [13, 14,
15]. Despite their effectiveness, we argue that existing manner
of sentence-level speech synthesis is still insufficient to provide
high-quality paragraph reading, in which the synthesized audio
is created in paragraph-level, like news reading, audiobook, au-
dio content dubbing, or even dialogue composed by multiple
interrelated sentences.

The key reason is that most TTS models fail to capture
global context among sentences within the paragraph in synthe-
sizing audio. They usually convert text to speech in sentence-
level and concatenate them for paragraph reading. An underly-
ing fact is omitted that: sentences within the paragraph are not
isolated and have various dependencies with respect to speech
and textual context. Regarding the large context variation in
long-form content, concatenating synthesized speech sentence
by sentence has noticeable performance gap to natural recording
in paragraph reading from perceptual evaluation. Additionally,
the imbalanced distribution of TTS corpus data with variable-
length sentences, making it difficult for TTS systems to generate
high quality synthesized speech for exceptionally long or short

sentences. Leaving this fact untouched, previous modeling of
sentence-level context for speech synthesis has key limitations:

• Correlation between adjacent sentences. For paragraph read-
ing, adjacent sentences influence each other naturally as the
semantic information flowing. Thus, sentence-level speech
synthesis lacks context coherence within the paragraph, and
can hardly provide expressive paragraph reading.

• Efficiency or consistency on extra-long sentences. Synthe-
sizing extra-long sentences usually leads to unstable results
(e.g. bad alignment between text and speech) and high la-
tency. Generally, such sentences are partitioned into seg-
ments and then synthesized separately, which may cause in-
consistent speech rate or prosody.

• Quality on extra-short sentences. With the data scarcity of
extra-short sentences (e.g., consisted by one or two words) in
corpus, TTS easily sacrifices the performance on such pattern
with bad pronunciation or extremely slow speech rate.

In light of the above limitations, this work aims to study
the paragraph TTS by exploring the global-level semantic de-
pendency across different sentences. By doing so, the informa-
tion transfer is enabled among sentences with variable lengths.
Having realized the vital role of global context-enhanced para-
graph TTS, it may suffer from scalability issue when perform-
ing speech synthesis on long paragraphs with complex cross-
sentence dependency modeling. To tackle the challenges, we
propose ContextSpeech and make the following contributions:

• To preserve cross-sentence dependency from model perspec-
tive, a memory-cached recurrence mechanism is incorporated
to transfer knowledge between segments based on the cached
hidden state. We use one of the state-of-the-art sentence-
level speech synthesis architecture, Conformer [16] based
TTS in [17], as our backbone model. The cached hidden state
of each Conformer block in both encoder and decoder brings
text and speech information from the previous segment.

• Inspired by the context-aware conversational TTS [18], we
propose a new text-based contextual encoder to broaden the
model horizon from sentence to paragraph. In particular, the
proposed contextual encoder takes text-based features (e.g.,
BERT [19]-based embedding, pre-defined statistical textual
information) as input and integrate them with phoneme em-
bedding. Such integration covers information from history to
future and alleviate the one-to-many mapping issue in TTS.

• To reduce the memory and computation cost, we integrate the
linearized self-attention with permute-based relative position
encoding under our memory reused framework, so as to avoid
quadratic complexity caused by softmax self-attention.

Experiments are carried out on a speech corpus of Chinese au-
diobook. The results show that ContextSpeech can generate
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Efficient Self-Attention Mechanism
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Figure 1: The overall model architecture of our ContextSpeech with key modules

more expressive and coherent paragraph audios compared with
baseline ConformerTTS model in terms of objective and sub-
jective evaluation. From the observation, it also alleviates the
issues caused by extra-long and extra-short sentences obviously.
Additionally, the final model largely alleviate the efficiency is-
sue of extra-long input compared with baseline model.

2. Methodology
In this section, we present the details of our ContextSpeech
model whose architecture overview is shown in Figure 1.

2.1. ConformerTTS with Memory Reuse

2.1.1. Backbone Model

Our TTS framework is built upon the backbone model Con-
formerTTS, which adopts the Conformer Block (CB) in both
encoder and decoder [17] of a FastSpeech2-like framework.
As shown in Figure 1-(c), the CB integrates a Convolution
Module (ConvM) and a Multi-Head Self-Attention (MHSA)
to model the local correlation and the global interaction. Ad-
ditionally, a Convolution based Feed-Forward Network (Con-
vFFN) is attached after the self-attention for encoding the cor-
relation between adjacent hidden states. More precisely, the
ConvM is composed of four stacked components, including a
convolutional feed-forward module, a gated linear unit (GLU), a
depthwise convolution module and another convolutional feed-
forward module. Let N be the number of CB stacked in encoder
(or decoder), the input feature of the n-th CB is represented as
Hn

t = [ht,1, ..., ht,L], where t is the index of current sequence
and L is the sequence length. In summary, the overall frame-
work of baseline model used in this paper 1) are demonstrated
in Figure 1-(b) by ignoring the cached information 2) and con-
sumes a softmax-based MHSA [20] in CB .

2.1.2. Segment-level Memory Reuse

Inspired by [21], we cache the hidden state of previous segment
in each layer and reuse it with current segment for involving
contextual information, as shown in Figure 1-(b). Notice that,
the preceding segment is configured with a fixed length while
a complete sentence is used as the current segment. By doing
so, we can retain more intact semantic and acoustic information
from both text and speech. Instead of reusing the input feature
of MHSA, we choose to cache the input feature of CB directly
since the ConvM can help in capturing the contextual informa-
tion around the concatenation point. As the output of the n-th
block is the input of the (n + 1)-th block when n < N , the
hidden state can be represented as Eq.(1), where SG(·) means
stop-gradient and the notation [A ◦ B] indicates concatenating

hidden sequences A and B along the length dimension.

Hn+1
t = [SG(Hn+1

t−1 ) ◦ ConformerBlock(Hn
t )] (1)

2.2. Text-based Contextual Encoder

Given the same sentence with different context, prosody of the
generated speech would be different. Modelling contextual in-
formation by incorporating external linguistic and semantic fea-
tures would benefit the TTS voice quality [18, 22, 23, 24]. In
this section, we introduce a text-based contextual encoder to en-
hance the prosody expressiveness and coherence for paragraph
reading. The framework is illustrated in Figure 1-(a). Given a
paragraph with a predefined context range c (sentence number
in a paragraph), the contextual encoder processes it to extract
two kinds of contextual representations as described below:

• Token-based contextual representation. The current sen-
tence is used to extract token- level1 Bert [19] embedding
(TBE) and token-level statistical features (TSF). The token-
level statistical features are listed in Table 1, where k, s and
p denote token, sentence and paragraph. For example, ik s

means the index of current token in the sentence, ns p means
the number of sentence in the original paragraph text, and
max(nk,s) means the maximum token number in a sentence
over the training data. After concatenation, the TBE and TSF
will be up-sampled and go through convolution and projec-
tion layers to align with phoneme-level features.

• Sentence-based contextual representation. For each sen-
tence in the input paragraph, the sentence-level Bert embed-
ding is extracted to construct a paragraph-level contextual
representation (PCR) by GRU. After that, the concatenation
of PCR and the current sentence embedding is fed into a pro-
jection layer and then up-sampled to phoneme-level.

The generated token-based and sentence-based contextual em-
bedding will be added into the phoneme embedding of cur-
rent sentence. With the above design, our contextual encoder
not only broadens the horizon of current phoneme to global
paragraph context by incorporating paragraph-level statistical
features, but also improves the encoder expressiveness with
phoneme embedding enhanced hierarchical contextual features.

Table 1: Token-level statistical features.
F0 F1 F2 F3 F4 F5

ik,s
nk,s

ik,p
nk,p

is,p
ns,p

nk,s
max(nk,s)

nk,p
max(nk,p)

ns,p
max(ns,p)

1In our token extraction, for Chinese, ”token” means ”character”,
for English, “token” means “subword”.
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2.3. Efficient Self-Attention Mechanism

The self-attention module brings the effectiveness but also lim-
its the model efficiency due to the quadratic time and memory
complexity. Efficient Transformers [25, 26, 27, 28] are pro-
posed to improve the model efficiency on long-form input. Lin-
earized self-attention is a kernel based method that can signifi-
cantly reduce the computation time and memory footprint.

2.3.1. Linearized Self-Attention

Let X ∈ RL×d be the input of self-attention module, Q = Wq ·
X , K = Wk ·X and V = Wv ·X are linear transformations on
the X . The canonical softmax-based self-attention mechanism
can be presented as A(Q,K, V ) = softmax(QKT /

√
d)V ,

where the time and memory complexity is quadratic according
to the input length. Refer to [28], the attention matrix can be
generalized as a similarity function of Qi and Kj , the i-th or j-
th row of the matrix Q and K, as Eq.(2). The similarity function
can be any other attention functions that are non-negative.

A(Qi,K, V ) =

∑L
j=1 sim(Qi,Kj)Vj

∑L
j=1 sim(Qi,Kj)

(2)

Given a qualified kernel function ϕ(x), the generalized row-
wise attention matrix can be rewritten as Eq.(3). According to
the associative property of matrix multiplication, ϕ(Qi)

T can
be taken out of the summation formula both in numerator and
denominator as Eq.(4). Thus, we can compute the summation
formula part in advance and reuse them for each query.

A(Qi,K, V ) =

∑L
j=1 ϕ(Qi)

Tϕ(Kj)Vj
∑L

j=1 ϕ(Qi)Tϕ(Kj)
(3)

=
(
ϕ(Qi)

T
L∑

j=1

ϕ(Kj)Vj

)
/
(
ϕ(Qi)

T
L∑

j=1

ϕ(Kj)
)

(4)

2.3.2. Permute-based Relative Position Encoding

To endow the linearized self-attention with the awareness of rel-
ative positional information, we applied a permute-based rela-
tive position encoding as in [29]. Particularly, the sim(Qi,Kj)
in Eq.(2) will be converted to permute based format as Eq.(5). r
is set as 1 to avoid exploding as the sequence length increases.
A premutation B: {1,2,...,d} → {1,2,...,d} is generated ran-
domly, where d is the dimension of query or key. Here, the first
{1,2,...,d} and the second {1,2,...,d} can be treated as index col-
lections with different order. PB is the premutation matrix of B,
where PB,ij = 1 if B(i) = j; otherwise PB,ij = 0.

simp(Qi,Kj) =
(
riP

i
Bϕ(Qi)

)T(
r−jP j

Bϕ(Kj)
)

(5)

3. Evaluation
3.1. Experimental Setup
Dataset. We perform experiments on an expressive Chinese
male voice. The dataset is an audiobook corpus composed of
around 70 hours (∼35, 000 sentences) of narration speech and
the corresponding text transcripts. We left out 100 paragraphs
from the same book for objective evaluation and construct 3 dif-
ferent paragraph test sets from other books for subjective eval-
uation. Set-A: 50 paragraphs with sentences in normal length,
which are used to evaluate the overall model performance on
paragraph reading. Set-B: 50 paragraphs with sentences of
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Figure 2: Subjective Evaluation: Paragraph MOS results.

Table 2: Objective Evaluation: Prosody-related metrics.
Correlation

Metrics Pitch Intensity Duration Pause
Baseline 0.688 0.853 0.764 0.888

ContextSpeech 0.716 0.870 0.817 0.929

extra-short length, i.e., one or two words, to see if the model
alleviate the robustness issue in extra-short sentences. Set-C:
10 paragraphs with incremental sentence number from 2 to 11,
to test the model efficiency on extra-long input sentences.
Model Configuration. The ConformerTTS related model con-
figuration is consistent to the settings in [17]. The cached mem-
ory length is set as 128 and 64 for encoder and decoder, respec-
tively. For the text-based contextual encoder, the context size c
is set as 11, i.e., 5 sentences before and after the current sen-
tence. The [input dim, output dim, kernel size] of the convolu-
tion layer is [774, 384, 5], which is followed by RELU, layer
norm, dropout with rate 0.5 and a transformation layer with di-
mension R384×384. The GRU layer with dimension R384×384

is followed by a RELU, dropout with rate 0.5 and a linear layer
with size R768×384. The kernel function used in linearized self-
attention is ϕ(x) = elu(x) + 1. We used MelGAN as the
vocoder to generate audio from mel-spectrograms.
Evaluation Protocol. We conduct paragraph MOS (mean opin-
ion score) test to evaluate the overall voice performance of our
method considering both recording and baseline model. 25 na-
tive speakers listen to each audio and give a score in 10-point
scale on the overall performance and 8 specific metrics. Para-
graph CMOS (comparative mean opinion score) test is used to
compare the proposed model with the baseline model on differ-
ent test sets. 15 native speakers listen to the synthesized samples
from two models, compare them side by side and give a score
from -3 to +3, where the baseline model is set as 0 for reference.
Additionally, we propose a group of objective metrics to eval-
uate model performance according to recordings with the same
transcripts, including pitch, intensity, duration and pause. For
model efficiency evaluation, we conduct training on 8 NVIDIA
V100 GPUs and inference on 1 NVIDIA Tesla K80 GPU.

3.2. Quality on Paragraph Reading
Subjective Evaluation. We conduct a paragraph MOS test on
Set-A for our model along with baseline and recording. Fig-
ure 2 shows the result in terms of overall impression and other
8 specific metrics. The ContextSpeech outperforms the baseline
model in all cases and achieves high-quality speech close to the
recording in term of overall impression (7.93@7.99). Specif-
ically, the proposed model reduces the MOS gap with record-
ing from 0.25 to 0.06 compared with baseline model, which is
around 76% improvement. Especially for voice pleasantness,
emotion, style matchiness and listening effort, ContextSpeech
shows significant improvement with more than 50% MOS gap
reduction for expressive paragraph reading.
Objective Evaluation. Besides the subjective evaluation, we
also calculate the prosody-related objective metrics to mea-
sure the similarity between synthesized voice and 100 para-
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(a) Mel-Spectrograms of Baseline sample

(b) Mel-Spectrograms of ContextSpeech sample

Figure 3: Mel-Spectrogram samples of paragraph with one-
word sentence generated by ContextSpeech and the baseline.

Table 3: Inference latency measured by millisecond per phone
in different lengths of input sequences.

#Sent(#Phone) 3(414) 5(620) 7(898) 9(1354) 10(1506) 11(1574)
Baseline 0.521 0.422 0.416 0.609 0.797 OOM

ContextSpeech 0.150 0.111 0.089 0.083 0.078 0.075
(x3.47) (x3.80) (x4.67) (x7.34) (x10.22)

graph recordings. Table 2 shows that ContextSpeech achieves
improvement in each objective metric compared with baseline
model, which also verifies the model performance superiority
in paragraph-level prosody expressiveness.

3.3. Robustness on Extra-short Sentences
As mentioned in Section 1, extra-short sentences (one or two
words) handled by sentence-level speech synthesis model usu-
ally suffer from the robustness issue, such as bad pronunciation
and low speech rate. Therefore, we conduct paragraph CMOS
test on Set-B. Setting the score of Baseline model as 0 for refer-
ence, ContextSpeech obtains 0.107 CMOS gain. Both the bad
pronunciation issue in one-word sentences and low speech rate
issue in two-word sentences are effectively alleviated. Figure 3
shows the mel-spectrogram samples to compare ContextSpeech
and baseline in handling one-word sentences. The red rectan-
gles mark the position of the sentence with only one word in
the paragraph. It is obvious that the spectrogram of baseline
model in that position is muffle (Figure 3(a)), while that of Con-
textSpeech model is much clearer with complete formant (Fig-
ure 3(b)). By listening to the audios, we also notice that the
pronunciation of that one-word sentence is distorted in baseline
paragraph but clear in the ContextSpeech paragraph.

3.4. Efficiency on Extra-long Sentences
The efficient self-attention module described in Section 2.3
largely improves the model efficiency. For training stage, Con-
textSpeech with linearized self-attention achieves 2x of speedup
and 2x of memory tolerance compared with using softmax-
based self-attention. For inference stage, ContextSpeech shows
significant efficiency superiority over the baseline especially for
extra-long inputs. Table 3 illustrates the inference latency for
baseline and ContextSpeech model according to different input
phoneme length on Set-C. The baseline model run into out-of-
memory when the input phone number increase to 1574. In
contrast, ContextSpeech is able to handle such long sequences.

Table 4: CMOS Test on Paragraphs with Extra-Short or Long
sentences for Voice Quality Comparison.

Baseline ContextSpeech
Paras with Extra-short Sentences 0 +0.107
Paras with Extra-long Sentences 0 +0.226

Table 5: Ablation Study with Paragraph CMOS Test.

ContextSpeech - MR - TCE - ESA
0 -0.085 -0.048 -0.030

Additionally, ContextSpeech outperforms the baseline in each
group and achieves more than 10x speedup when the input
length is 1506. Furthermore, we perform paragraph CMOS on
this test set and obtain 0.226 CMOS gain (Table 4). In summary,
for extra-long input sentence, ContextSpeech shows better ex-
pressiveness and efficiency compared with baseline.

3.5. Model Ablation Study

We conduct ablation study to evaluate the effectiveness of
key modules in ContextSpeech. Table 5 shows the paragraph
CMOS results on Set-A component-wise ablation results.
Memory Recurrence (MR). Memory reuse mechanism de-
scribed in Section 2.1 is proposed to enlarge the receptive field
of current segment to see more historical information. To verify
its effectiveness, we remove it from ContextSpeechmodel and
do a paragraph CMOS test for comparison. Set ContextSpeech-
model as 0 for reference, removing MR cause -0.085 regression,
which demonstrates the contribution from MR mechanism.
Text-based Contextual Encoder (TCE). As described in Sec-
tion 2.2, we proposed a text-based contextual encoder to lever-
age hierarchical contextual information from plain paragraph
text. To evaluate its effectiveness, we do paragraph CMOS test
to compare the models with and without TCE module. The neg-
ative score -0.048 verifies the positive effect of TCE module.
Efficient Self-Attention Mechanism (ESA). ESA is intro-
duced in Section 2.3, which aims to improve model efficiency
and robustness especially on extra-long input. The efficiency
improvement and corresponding performance on extra-long in-
put are proved in Section 3.4. Here we replace the ESA in Con-
textSpeech by softmax-based self-attention with relative posi-
tion encoding in Transformer-XL, to evaluate the performance
in paragraphs with normal-length sentence. The paragraph
CMOS result, -0.030, demonstrates that the ESA module will
not cause quality regression and even with slight improvement.

4. Conclusion
In this paper, we propose ContextSpeech, which is an expres-
sive and efficient TTS model for generating speech of para-
graph reading. The memory reuse mechanism is introduced
in the encoder-decoder framework to incorporate historical in-
formation of text and speech to current sentence. Text-based
contextual information is encoded in a hierarchical structure to
extend the model capability to paragraph level. Furthermore,
linearized self-attention with compatible relative position en-
coding is adopted to improve the model efficiency. Experiments
on Chinese audiobook corpus demonstrate that ContextSpeech
achieved superior voice quality and expressiveness in paragraph
reading compared with the baseline model, 76% reduction on
the MOS gap to recording. ContextSpeech also shows robust-
ness performance on extra-short sentences with 0.107 CMOS
gain, and improves both the expressiveness (0.226 CMOS gain)
and efficiency (∼10x speedup) over the extra-long sequences.
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J. Sotelo, A. de Brébisson, Y. Bengio, and A. C. Courville, “Mel-
gan: Generative adversarial networks for conditional waveform
synthesis,” Advances in Neural Information Processing Systems
(NIPS), vol. 32, 2019.

[15] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial net-
works for efficient and high fidelity speech synthesis,” Advances
in Neural Information Processing Systems, vol. 33, pp. 17 022–
17 033, 2020.

[16] Z. Peng, W. Huang, S. Gu, L. Xie, Y. Wang, J. Jiao, and Q. Ye,
“Conformer: Local features coupling global representations for
visual recognition,” in IEEE/CVF International Conference on
Computer Vision (ICCV), 2021, pp. 367–376.

[17] Y. Liu, Z. Xu, G. Wang, K. Chen, B. Li, X. Tan, J. Li, L. He, and
S. Zhao, “Delightfultts: The microsoft speech synthesis system
for blizzard challenge 2021,” arXiv preprint arXiv:2110.12612,
2021.

[18] H. Guo, S. Zhang, F. K. Soong, L. He, and L. Xie, “Conversational
end-to-end tts for voice agent,” in Spoken Language Technology
Workshop (SLT). IEEE, 2021, pp. 403–409.

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you
need,” Advances in neural information processing systems (NIPS),
vol. 30, 2017.

[21] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhut-
dinov, “Transformer-xl: Attentive language models beyond a
fixed-length context,” in Annual Meeting of the Association for
Computational Linguistics (ACL), 2019.

[22] S. Lei, Y. Zhou, L. Chen, Z. Wu, S. Kang, and H. Meng, “Towards
expressive speaking style modelling with hierarchical context in-
formation for mandarin speech synthesis,” in International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2022, pp. 7922–7926.

[23] G. Xu, W. Song, Z. Zhang, C. Zhang, X. He, and B. Zhou, “Im-
proving prosody modelling with cross-utterance bert embeddings
for end-to-end speech synthesis,” in International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021,
pp. 6079–6083.

[24] L. Xue, F. K. Soong, S. Zhang, and L. Xie, “Paratts: Learning
linguistic and prosodic cross-sentence information in paragraph-
based tts,” Transactions on Audio, Speech, and Language Pro-
cessing, vol. 30, pp. 2854–2864, 2022.

[25] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generat-
ing long sequences with sparse transformers,” arXiv preprint
arXiv:1904.10509, 2019.

[26] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The efficient
transformer,” in International Conference on Learning Represen-
tations (ICLR), 2020.

[27] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Lin-
former: Self-attention with linear complexity,” arXiv preprint
arXiv:2006.04768, 2020.

[28] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, “Trans-
formers are rnns: Fast autoregressive transformers with linear
attention,” in International Conference on Machine Learning
(ICML). PMLR, 2020, pp. 5156–5165.

[29] P. Chen, “Permuteformer: Efficient relative position encoding for
long sequences,” International Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2021.

4887


