
From Interval to Ordinal: A HMM based Approach for Emotion Label
Conversion

Jingyao Wu1, Ting Dang2, Vidhyasaharan Sethu1, Eliathamby Ambikairajah1

1School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia
2Nokia Bell Labs, Cambridge, UK

jingyao.wu@unsw.edu.au, ting.dang@nokia-bell-labs.com, v.sethu@unsw.edu.au,
e.ambikairajah@unsw.edu.au

Abstract
Ordinal labels along affect dimensions are garnering increas-
ing interest in computation paralinguistics. However, they are
rarely obtained directly from raters, and instead typically ob-
tained by conversion from interval labels. Current approaches
to such conversion map interval labels to either absolute ordinal
labels (AOL) (e.g., low and high), or to relative ordinal labels
(ROL) (e.g., one has higher arousal than the other), but never
take both into account. This paper presents a novel approach to
map time-continuous interval labels to time-continuous ordinal
labels. It simultaneously considers both inter-rater ambiguity
about where AOLs sit on the interval label scale and the con-
sistency amongst different raters in terms of ROLs. We vali-
date the proposed approach by comparing the converted ordinal
labels to original interval labels and the categorical labels for
the same speech using the publicly available MSP-Podcast and
MSP-Conversation corpora.
Index Terms: Emotion recognition, ordinal labels, label con-
version, hidden markov model

1. Introduction
Consequently, speech is one of the most natural forms of hu-
man communication and a key modality through which emo-
tions are expressed. Speech emotion recognition plays an im-
portant role in human-machine interactions and has received in-
creasing interest in affective computing [1]. Human emotions
are complex and can exhibit varying degrees of ambiguity [2].
It has been suggested ordinal emotion representations are bet-
ter aligned with human perceptions and exhibit less ambiguity
compared to other emotion representations [3]. Numerous stud-
ies have demonstrated that humans excel at comparing two op-
tions rather than assigning absolute labels [4–6]. Thus, a grow-
ing body of work has recognised their importance and adopted
ordinal regression or preference learning frameworks for emo-
tion recognition [7–10]. More importantly, increasing attention
has been drawn to modelling emotions in a time-continuous
manner that fulfils the dynamic nature of emotion. This leads
to a more interesting challenge of modelling time continuous
ordinal labels where more and more works fall into [3]. Never-
theless, there are still great limitations in obtaining such ordinal
labels in the first place. This is because collecting primary con-
tinuous ordinal labels from human annotators is challenging,
thus such emotion datasets are rarely available [3].

It should be noted that two distinct notions of ordinal af-
fect labels exist [11]. Namely, Absolute Ordinal Labels (AOLs)
which use an ordinal scale to describe affective attributes such
as a scale of {low, medium, high} valence; and Relative Or-
dinal Labels (ROLs) which encode pairwise comparisons be-
tween instances such as sample A has a higher arousal intensity

than sample B. Both AOLs and ROLs are ordinal but are not
equivalent and convey complementary information.

As previously mentioned, challenges inherent in directly
collecting ordinal labels have meant most currently available
emotion corpora use interval labels and only a very few utilise
ordinal labels. Furthermore, even these only provide either
AOL [12, 13] or ROL [9, 14], but not both and in all cases
the labels are provided per utterance and are not time-varying
continuous annotations. Consequently, there is a need to con-
vert interval labels to ordinal labels [3]. Current approaches to
conversion from interval labels to AOLs typically assign hard
thresholds to partition the interval label space and assign an
AOL to each. They only vary in how the thresholds are cho-
sen, which can range from using label cluster boundaries [7,15]
to a grid search to obtain a desired trade-off between class bal-
ance and inter-rater agreement [11]. Approaches to converting
interval labels to ROLs typically involve pairwise comparisons
between all pairs of interval labels at different times and re-
tain information about the relationship (greater/lesser) and dis-
carding details of interval label values [9, 16, 17]. None of the
current approaches take both absolute and relative ordinal in-
formation into account simultaneously. In this paper we present
a novel approach to convert time-continuous interval labels to
time-continuous AOLs based on a hidden Markov model that
integrates rater specific absolute ordinal state distributions with
transition probabilities based on relative ordinal information.

2. From Interval to Ordinal: A State Space
Model

Given a time series of arousal/valence ratings, yr = yr
1:T , ob-

tained from rater r over the time interval t ∈ [1, T ], we aim
to find a corresponding time series of AOLs, Sr = Sr

1:T , with
each element drawn from a finite set of N possible AOLs γ =
{γ1, · · · , γN}. i.e., Sr

t ∈ γ. For instance, if N = 3, γ may
be {Low, Medium, and High} and the problem can be viewed
as that of converting a time-series of numerical arousal/valence
ratings to a sequence of Low/Medium/High labels.

Figure 1 (a) shows an example of the original interval labels
and the converted AOLs from two raters annotated on arousal
for the same speech utterance. It can be seen that the interval
scales are significantly different (solid and dash lines). Whereas
the AOL sequences (colored regions) are decoded for each in-
dividual raters based on their interval labels, such that different
regions of interval labels from two raters can map to the same
AOL γn. This allows the conversion to take into account the
heterogeneity in human’s perception of emotion.

Additionally, in order to incorporate information about rel-
ative changes in ratings that multiple raters agree on, we adopt a
hidden Markov model (HMM) to represent the relationship be-
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Figure 1: An example of the proposed AOL conversion approach with N = 3, corresponding to states {Low, Medium, High}. (a)
A graphical representation of the interval labels and the corresponding converted AOLs from two raters. (b) The state observation
probabilities for each rater with each PDF corresponding to one state P (y|Sr

i ); (c) A graphical representation of the HMM state
transitions among the three states.

tween interval and absolute ordinal labels that also incorporates
information from relative ordinal labels. We choose the number
of states of the HMM to be equal to the number of AOL states
N , and encode the temporal dynamics of the time-continuous
AOLs in the state transitions. Finally, the HMM is individually
trained for each rater at each utterance given their individual
interval labels, from which it is able to model each rater’s an-
notation characteristics (the range of numerical scores they use
corresponding to each ordinal label).

2.1. Hidden Markov Model of Ordinal Labels

The proposed HMM consists of two key components: (i) state
observation probabilities, brn(y) = P (y|γn, r), ∀n ∈ [1, N ],
that represents the distribution of interval scores correspond-
ing to each state n of the HMM (one for each ordinal label)
for each rate r; and (ii) state transition probabilities, ar

ij =
P (γj |γi, r), ∀i, j ∈ [1, N ], that describes the probability of
switching from one ordinal label to another. The transition
probabilities of HMM are initialized to be identical for all raters,
as they capture the arousal/valence trends which have been ob-
served to have higher agreement amongst raters [3]. They are
further optimized during training for each rater to capture their
individual transition characteristics. Henceforth we drop the su-
perscript r when we do not need to distinguish between raters.

We infer the ordinal sequence S = S1:T as:

St = argmax
γn∈γ

P (St = γn|θ, y1:T ), 1 ≤ t ≤ T (1)

where θ = (A,B, π) denotes the model parameters with A =
{aij} indicating the transition probabilities; B = {bi(y)} in-
dicating the set of observation probabilities; and π is the initial
state probability P (S1 = γn). Finally, we assume that the state
observation probabilities are all Gaussian distributions:

bn(y) = P (y|St = γn) = N (y|µn, σn) (2)
where µn and σn refer to the mean and standard deviation of
the nth Gaussian mixture component respectively.

2.2. HMM Parameter Estimation

Prior to training the HMM, the parameters are initialized to rea-
sonable values in a data driven manner. Specifically, to initial-
ize the state observation probabilities, we first fit an N -mixture
Gaussian Mixture Model (GMM) to each rating, y:

P (y) =
T∏

t=1

N∑

n=1

ωnN (yt|µ(y)
n , σ(y)

n ) (3)

where ωn indicates the weight of each mixture component.The
mixtures are then sorted in order of their means, µn, and the

observation probabilities of each state of the HMM, bn(y) is
initialised in an increasing order of the sorted mixture compo-
nents. i.e., the Gaussian mixture component corresponding to
the lowest µn is set as the initial parameters corresponding to
the lowest AOL and so on.

To initialise the transition probabilities, aij , we take into
account the fact that human emotion and, consequently, the af-
fect labels do not change rapidly. Consequently, we expect self-
transitions of the states to be fairly high and the initial transition
probabilities are assumed to be:

aij =

{
1− α , i = j

α
N−1

, i ̸= j
(4)

where α is a small value, empirically chosen as 0.1.
During optimization, individual GMMs are estimated to

each individual rater for initial state observation probability. On
the other hand, the initial transition probabilities are set to be
the same using Eq. (4) to reflect the higher degree of agreement
among raters about relative changes in affect labels. All N ini-
tial state distribution, π, are set to be 1

N
. Finally, the Baum-

Welch algorithm is used to train the HMM [18], and Viterbi
decoding [19] is used to infer the ordinal sequence, S.

3. Experimental Settings
To validate the converted AOLs, we compare it with both the
original interval labels as well as categorical labels obtained in-
dependently to describe the same data. Consequently, databases
containing both labels were required, and amongst the publi-
cally available datasets, there was only one choice. We selected
the MSP-Podcast [13] and MSP-Conversation [20] corpora as
they both contain the same recordings but were annotated using
the two different label types.

The MSP-Podcast corpus is a large naturalistic speech emo-
tional dataset that is collected from real-life podcast record-
ings [13]. It contains around 100 hours speaker turns with each
segmented into 2.75s to 11s. The speech turns are labelled with
categorical labels at each turn by a number of raters varying
from 5 to 11. There are more than six emotion categories in-
cluded in the dataset, however, we only consider the four pri-
mary categories that are labelled the most frequently: {Nautral,
Happy, Sad, Angry}. In addition, we selected the speaker turns
that are labelled with more than 60% agreement among the mul-
tiple raters. Consensus categorical labels were selected based
on the majority vote.

The MSP-Conversation dataset is a subset of MSP-Podcast
dataset [20]. It is labelled with time continuous ratings within
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Figure 2: An example plot of original interval labels y1:T and
mean of HMM state ỹ1:T , with different colors indicating dif-
ferent states. The error bar indicates the ‘quantization error’
between them at time t.

Table 1: Emotion Change Consensus between the interval la-
bels and converted AOLs computed over different periods (L).

Consensus Information
Arousal Valence

L(s) Baseline (S̃) HMM (S) Baseline (S̃) HMM (S)
1 0.487 0.545 0.475 0.545
3 0.515 0.594 0.512 0.593
5 0.562 0.633 0.544 0.630

the range [-100, 100] on arousal, valence and dominance by 4-
11 different raters. Prepossessing is applied to the raw labels
following the method in [20] and the resultant labels have a
sampling rate of 59 fps. A moving average filter of 1-second
window size is applied to smooth the labels. We select the 4
most agreed raters based on the Cronbach alpha as suggested
in [20] to achieve a consistent number of raters throughout all
utterances. To align the interval labels with corresponding cate-
gorical labels for the validation, we only select the speaker turns
that are included in both databases. Consequently, we used
2222 turns with each containing 500-1200 samples depending
on the lengths of the speaker turns throughout this work.

In all experimental work reported in this paper, the number
of states used in the HMM was N = 3, leading to the states
γn – ‘low (L)’, ‘medium (M)’ and ‘high (H)’ for arousal and
valence. Thus, three mixtures of GMM was used associating
with {L,M,H}. HMMs were trained using the HMM toolbox
[21]. The state initial probability was set to be π0 = [ 1

3
1
3

1
3
], and

state transition probabilities were initialized using α = 0.1.

4. Comparing Ordinal and Interval Labels
In order to compare the converted AOLs to the original interval
ratings, we adopt three measures: (i) we estimate how closely
the ordinal labels represent the original interval ratings in terms
of a ‘quantisation error’; (ii) we quantify the consensus in emo-
tion change between the original and converted labels; and (iii)
we compare inter-rater agreement before and after conversion.
The converted AOLs should achieve higher agreement among
the raters compared to the original ratings, while simultane-
ously retaining pertinent information about emotion level and
emotion change. The results are compared to a baseline ap-
proach whereby AOLs are obtained as the most likely state, S̃,
based on the state observation probabilities (not making use of
the transition probabilities). i.e., S̃t = argmaxγn∈γ bn(yt).
This is equivalent to a hard thresholding, the current de-facto
approach for mapping interval labels to AOLs.

4.1. Conversion ‘Quantisation Error’

When an interval rating time series, y = y1:T , is converted to
a sequence of ordinal labels, S = S1:T , we can view S as a
‘quantised’ version of y with µn;n = 1 : N as the N ‘quan-
tisation levels’. This lets us define a ‘quantisation error’, ηQ,
which estimates how well the ordinal labels track the variations
in the interval label (refer Figure 2) as:

Figure 3: Example comparison matrices for: (a) original inter-
val labels, Mr; and (b) converted AOLs, M̃r . The up and down
arrows indicate increase and decrease. The shaded areas indi-
cate the past and future L-second samples being considered for
estimating consensus.

ηQ =
1

T

√√√√
T∑

t=1

(yt − ỹt)2 (5)

where ỹt = µn when St = γn (noting that S ∈ γ).
The averaged ηQ was found to be 4.88±0.7 and 5.17±1.01

for arousal and valence respectively. The errors are reasonably
small and are only 2.4% and 2.5% of the full range of [-100,100]
on the ratings, suggesting that the converted labels are able to
capture major trends in the original ratings while leaving out
the small variations. In comparison, the averaged ηQ calcu-
lated from the above mentioned baseline, S̃, was 5.24±0.9 and
6.77±1.21 for arousal and valence respectively. Finally, the
separation between the AOLs (low, medium and high) are on
average 27.8 and 30.2 for arousal and valence respectively (an
example can be found in Figure 2). This is much greater than
ηQ suggesting that typical errors are much smaller than the state
transitions and unlikely to be misleading.

4.2. Emotion Change Consensus

We estimate the consensus in emotion change between the orig-
inal interval rating, yr = yr

1:T , from rater r and the converted
ordinal label sequence, Sr = Sr

1:T , by inferring the direction
of changes of the label at each frame compared to its neigh-
bouring frames and comparing how often these changes match
across yr and Sr .

For both yr
1:T and Sr

1:T , we carry out pair-wise comparisons
across all frames, resulting in the comparison matrices Mr and
M̃r respectively, as shown in Figure 3. Specifically, each entry
in the matrix Mr is given by:

Mr
pq =





↑ , yr
q > yrp

↓ , yr
q < yrp

= , yr
q = yr

p

(6)

where p, q ∈ [1, T ]. The degree of consensus in emotion
change, ρru between Sr and yr is then estimated as:

ρru =
1

K

∑

pq

[
Mr

pq = M̃r
pq

]
, s.t. |q − p| < L & p ̸= q (7)

where [·] denotes the Iverson bracket, and K is the total number
of elements being compared (noting that we only consider di-
rection of label change between frames that are at most L apart).

Table 1 reports the average ρru computed for all raters acorss
all utterances for arousal and valence for both the proposed
HMM based conversion (S) and the baseline (S̃). We set L
as 1sec, 3sec and 5sec, which are the durations that have been
shown to capture the temporal dynamics of emotion well [22].
In all cases, the proposed HMM based approach significantly
outperforms the hard thresholding based baseline. Further, as
L increases, the average ρru also increases. This indicates that
when longer term dynamics are considered there is greater con-
sensus between AOLs and the original interval labels.
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Table 2: Inter-rater agreement of the original interval labels
and the converted AOLs computed at different L.

Inter-rater Agreement
Arousal Valence

L(s) Interval MLE HMM Interval MLE HMM
1 0.450 0.564 0.774 0.454 0.552 0.796
3 0.482 0.513 0.576 0.491 0.565 0.593
5 0.542 0.528 0.543 0.525 0.530 0.480

4.3. Inter-rater Agreement
We use the matrices Mr and M̃r as introduced in section 4.2
to evaluate inter-rater agreement. For each rater and each ut-
terance, we compute the agreement level in a manner similar to
that outlined in [16] for both original interval labels and con-
verted AOLs. For each element within the first L off-diagonals
in Mr or M̃r , we assign it as an ‘agreed element’ if more
than half of the raters assign the same emotion change direc-
tion. Then the agreement ratio is computed as the number of
‘agreed entry’ divided by the total number of entries in the first
L off-diagonals.

Table 2 shows the agreement ratio of AOLs and original la-
bels at different off-diagonal periods for arousal and valence.
As expected, the inter-rater agreement with ordinal labels is
consistently higher than that with the original interval labels
for both arousal and valence [3], and the AOLs obtained via
the proposed conversion show greater agreement than those ob-
tained via thresholding (baseline).

5. Comparing Ordinal and Categorical
Labels

We also compared the converted AOLs to a set of categorical la-
bels, associated with the same underlying speech, but collected
independently of the interval labels. Specifically, since informa-
tion about change in ordinal labels (or equivalently information
captured by ROLs) is encoded in the transition probabilities of
the HMM in the proposed approach, we test whether the tran-
sition probability matrices exhibit distinct patterns during inter-
vals where emotion changes (identified by change in categorical
labels).

5.1. Emotion Change Data
The part of the utterance in MSP-conversation that contains a
categorical label is referred to as a turn in MSP-Podcast. We
concatenate consecutive turns (selected as outlined in section
3) into an augmented augmented segment which exhibits one
of the emotion changes in Table 3. Since we use four dis-
tinct categorical emotion labels, the possible types of emotion
changes, as well as the number of examples of each available
in the dataset, are shown in Table 3. As two types of emo-
tion change (i.e., ‘Angry-Sad’ and ‘Sad-Angry’) do not exist in
this database, we end up with 14 different augmented segments.
Additionally, these segments can be further divided into Change
and No-Change segments based on whether the categorical la-
bels corresponding to the two original segments were the same
or distinct.

5.2. Comparing Transition Probabilities

In order to test whether the transition probabilities correspond-
ing to Change and No-Change segments differ, we gather the
set of transition probability matrices corresponding to all the
raters and segments within a single No-Change augmented seg-
ment category and compare it to the set of transition probabil-
ity matrices corresponding to each Change augmented segment
category. For e.g., we gather 630 transition probability matrices
corresponding to all the ‘Neutral-Neutral’ augmented segments
and compare them to the set of 105 transition probability matri-

Table 3: Number of the segments in each augmented segment.
E.g., the number 105 (row 4 and column 1) indicates there are
105 segments labelled as ’Neutral to Happy’.

Happy Sad Angry Neutral
Happy 91 2 5 114

Sad 4 9 - 22
Angry 3 - 2 9
Neutral 105 28 5 630

Table 4: KStest results indicating whether H0 was accepted or
rejected, for possible state transitions, and corresponding p val-
ues when comparing ‘Neutral to Happy’ and ‘Neutral to Neu-
tral’ augmented pair.

Low Medium High
Low Accept, p = 0.069 Accept, p = 0.794 Reject, p = 0

Medium Accept, p = 1 Accept, p = 0.677 Reject, p = 0.0018
High Reject, p = 0 Accept, p = 0.556 Accept, 0.995

ces corresponding to ‘Neutral-Happy’ augment segments.
For the comparison, we employ a two-sample Kolmogorov-

Smirnov test (KStest). Specifically, each of the transition matri-
ces is comprised of 9-elements (by setting N = 3), and we as-
sume each element is drawn from a beta distribution (since they
are all probabilities bounded between [0, 1]). We then perform
the KStest on each element, which accepts or rejects the null hy-
pothesis that the beta distribution from which that element was
drawn was identical in the two categories we are comparing (for
e.g., ‘Neutral-Neutral’ vs ‘Neutral-Happy’).

Table 4 shows the test results as to whether the null hy-
pothesis (H0) was accepted or rejected and its corresponding p
values for a comparison between ‘Neutral - Neutral’ and ‘Neu-
tral - Happy’ on arousal. It can be seen that H0 is generally
accepted under 5% significant level at self-transitions (diago-
nal) which indicates that the two Beta distributions being tested
are the same. This is true such that the self-transitions at any
augmented segment should always be high enough in order to
achieve a smooth AOL sequence, leading to reasonable similar
distributions. Whereas on the cross-transitions (off-diagonal),
the H0 is rejected at some state transitions. For instance, it re-
jects H0 at state transition of ‘Low → High’ and ‘Medium →
High’. This aligns with the observation that arousal increases
for an emotion change from Neutral to Happy, which should
result in different transition probability patterns.

Additionally, we compute the rejection ratio of the cross-
state transitions of each comparison, then average across all
comparisons (noting that we compare every No-Change with
every Change leading to 40 sets of comparisons). The average
rejection ratio was 0.60 and 0.59 for arousal and valence respec-
tively. This suggests that it may be possible to distinguish the
Change and No-Change regions by only looking at the transi-
tion probability matrices with up to around 60% accuracy. It
also indicates that there are distinct patterns in the transition
matrices corresponding to the change in the emotion categories.

6. Conclusion
This paper presents a novel approach to convert time-varying
interval affect labels to time-varying ordinal affect labels. The
proposed method takes into account both the inter-rater variabil-
ity in how absolute ordinal notions such as ‘Low’, ‘Medium’
and ‘High’ map to interval scales, as well as the consistency
amongst raters in identifying change in emotion. Experimen-
tal results on the publicly available MSP-Podcast and MSP-
Conversations datasets demonstrate that the converted ordinal
labels yield higher inter-rater agreement compared to original
interval labels, while retaining pertinent information from the
original ratings. Additionally, comparisons of the ordinal la-
bels to categorical labels also reveal that label transitions in the
ordinal labels reflect changes in categorical labels.
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