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Abstract
Large-scale few-shot voice cloning service faces three main
challenges: model storage for huge number of users, fast model
training and real-time synthesis. They all involve model size di-
rectly. It is noted that few-shot voice cloning usually has much
bigger model size than common TTS trained by one speaker
corpus, since its source model needs more parameters to hold
the characteristics of various speakers. It also indicates that a
high quality TTS model for one voice could be much smaller.
To reduce model size of voice cloning, speaker-guided parallel
subnet selection (SG-PSS) is proposed in this paper. In adap-
tation phase, only one subnet is selected from parallel ones of
source model for target speaker. By this method, adaptation
training and inference can be much faster. Experiment results
show that the proposed approach achieves 4x model compres-
sion ratio, 3x inference speedup and even slightly better per-
formance in voice quality and speaker similarity in comparison
with baseline.
Index Terms: few-shot speech synthesis, model compression,
speaker-guided parallel subnet selection (SG-PSS)

1. Introduction
Recent years, with the rapid development of end-to-end text-to-
speech (TTS) framework, e.g.,Tacotron [1, 2], Fastspeech [3, 4]
and DurIAN [5], customized TTS (also called few-shot TTS,
voice cloning) has made great progress, which is an impor-
tant branch of traditional TTS to build a high-performance TTS
system for a speaker with limited data, i.e., a few minutes or
even only several samples. Nowadays, customized TTS has
widespread application in intelligent customer service, news
broadcast, audiobook narration, etc. Meanwhile, many speech
platforms also provide customized TTS service to end users.
As the demand of customized TTS increases rapidly, some chal-
lenges emerged, including less speech data collected from users,
less storage cost for customized model and higher efficiency
both in training and inference.

A popular customized TTS service usually needs to sup-
port millions of end users. For this reason, the training and
inference efficiency of customized model are shed more light
on reducing server cost. On the other hand, the footprint of
each customized model should be as small as possible to save
storage cost and loading time. Some prior works have been
reported on designing lightweight and efficient TTS models.
Luo [6] proposes a neural architecture search strategy to auto-
matically design lightweight models with on par voice quality.
DeviceTTS [7] leverages deep feedforward sequential mem-
ory network of small model size to accelerate inference speed.
Depthwise separable convolution [8] and dynamic convolu-
tion [9] are leveraged to replace self-attention completely to re-

duce memory storage [10, 11]. However, the pre-trained source
model for few-shot voice cloning requires enough number of
parameters in neural networks to hold the characteristics of var-
ious speakers. Therefore, simply compacting the model size
tends to degrade the quality of final customized voice seriously.

Meanwhile, many studies have been made on trading off
the number of adaptation parameters and voice performance.
Arik [12] and Chen [13] both conduct comparative experiments
on finetuning only speaker embedding or the whole model. It
shows that finetuning speaker embedding updates less parame-
ters but has much poorer voice naturalness. BoffinNTTS [14]
proves that freezing the weights of encoder leads to more ro-
bust synthesis. AdaDurIAN [15] evaluates the performance
of finetuning different modules by calculating the word error
rate and finds that fixing encoder and embedding modules (e.g.
phoneme, tone, language and emotion) could achieve the least
pronunciation errors. Meanwhile, AdaSpeech [16] introduces
conditional layer normalization into the decoder of Fastspeech2.
The scale and bias of the conditional layer normalization are
predicted by a module from speaker embedding. In adapta-
tion phase, AdaSpeech finetunes both the prediction module and
the speaker embedding. It achieves high performance with few
speaker specific parameters.

Generally, few-shot voice cloning usually build adaptation
on a pre-trained multi-speaker model of a large number of train-
able parameters. However, prior works also indicate that a high
quality TTS model for one voice could be much smaller. There-
fore, there might exists parameter redundancy in the adaptation
phase. How to trim out redundant parameters before adapta-
tion phase is the key factor to build a fast and light few-shot
voice cloning. Shazeer [17] proposes a sparsely-gated mixture-
of-experts (MOE) layer consisting of up to thousands of feed-
forward sub-networks and a gating network determines a sparse
combination of these experts with top-k values, which aims at
dramatically increasing model capacity with only minor losses
in computational efficiency. Inspired by it, we propose Speaker
Guided Parallel Subnet Selection (SG-PSS) for few-shot voice
cloning task. It splits a neural network layer into several parallel
subnets and the speaker embedding is employed to control the
output gate of each subnet. In source model training phase, the
speaker characteristics are clustered into these parallel subnets.
While in adaptation training and inference phase, only one sub-
net is selected among parallel ones based on speaker similarity.
With the reduction of model size, it speeds up the adaptation
training and real time synthesis effectively. The contributions
of this paper include:
• Design parallel sub-nets architecture with gating network for

speaker characteristic clustering.
• Introduce batch nuclear-norm maximization (BNM) loss to

improve the discriminability and diversity of speaker charac-
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Figure 1: The architecture of Fastspeech2-based TTS model
including phoneme encoder, variance predictor, mel decoder,
speaker encoder and residual encoder.

teristic clustering.
• Propose several gating strategies based on speaker embed-

ding for stacked multiple parallel sub-nets.
• Propose and evaluate subnet selection strategy for fast adap-

tation training and inference.

2. Baseline Architecture
As shown in Figure 1, Fastspeech2 [4] is adopted as the back-
bone of baseline network. To leverage multi-speaker training
data, a speaker encoder is employed to extract speaker embed-
ding from reference mel. In addition, a residual encoder is de-
signed to capture the environment noise in target mel. Here,
target mel represents the ground-truth mel which is used to cal-
culate reconstruction mel loss. While reference mel is randomly
selected from the same speaker of target mel. In this way, refer-
ence mel provides only speaker information and will not carry
any content information of target mel. Classification loss and
adversarial loss are both designed for two encoders to ensure
the embedding correctness. They are:

Lsc =
∑

i

Lce(SC(si), sli) (1)

Ladvs =
∑

i

Lce(RC(si), rli) (2)

Lrc =
∑

i

Lce(RC(ri), rli) (3)

Ladvr =
∑

i

Lce(SC(ri), sli) (4)

where Lce is cross entropy loss and SC, RC are speaker and
residual classifiers. si and ri represent the i-th speaker embed-
ding and residual embedding, and sl, rl are its speaker identity
and residual labels.

The total training loss is calculated as below:

LG = λrecon ∗ (Lmel
1 + Lpitch

1 + Ldur
1 )

+ λspk ∗ (Lsc + Ladvs)

+ λres ∗ (Lrc + Ladvr )

(5)

where Lmel
1 , Lpitch

1 and Ldur
1 mean the L1 loss for predicted

mel, pitch and duration respectively. λrecon, λspk and λres are
weights for losses of different modules.

In few-shot voice cloning stage, only the parameters of
pitch predictor, duration predictor and 2-layer 1D convolutional
network of each FFT block in decoder are updated. In addi-
tion, to enhance the training stability in adaptation stage, target
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Figure 2: The architecture of Speaker-guided Parallel Subnet
Selection (SG-PSS).

speaker embedding is represented by the nearest one in source
model training corpus. The similarity of speaker embedding is
measured by Euclidean distance.

3. Proposed Architecture
3.1. Speaker-guided Parallel Subnet Selection

As shown in Figure 2, the SG-PSS layer consists of N parallel
subnets, PSN0, PSN1...PSNN−1. Each of them has identi-
cal architecture (e.g., linear layer, convolutional layer), but with
separate parameters. In pre-training phase, they are fed with the
same input and their outputs are multiplied by respective gat-
ing vectors before added together. The gating vectors herein are
one-hot like and determined by speaker embedding. It means
similar speakers are likely to be concentrated on the same one
subnet. Therefore, the training process can be regarded as an
automatic speaker clustering as well and each subnet represents
the characteristics of one speaker cluster. The gating network
consists of two stacked dense layers and a softmax layer. The
calculation of SG-PSS in pre-training is shown as below:

y =

N−1∑

i=0

PSNi(x)(GN(spk emb))) (6)

where x, y represent the input and output of SG-PSS module,
GN stands for gating network, PSNi denotes the i-th parallel
sub-network and spk emb is speaker embedding.

While in adaptation phase, the target speaker embedding is
selected following the same selection strategy of baseline sys-
tem. Then it is fed into the gating network to generate gates.
Only the subnet corresponding to the greatest gate will be re-
mained for fine-tuning and others are trimmed.Therefore, only
1/N parameters of SG-PSS layer are kept in adaptation train-
ing and final customized model, which results in reduction of
computation cost and memory storage.

The structure of N parallel sub-networks in SG-PSS seems
similar as the experts in MOE [17]. However, there are at least
three differences between them. At first, their application pur-
poses are different. MOE is designed to expand model param-
eters efficiently to improve model capability for very large data
set (e.g., 100 billion word corpus in language modeling, ma-
chine translation and speech-to-animation task) [18]. On the
right contrary, SG-PSS is proposed to compact model parame-
ters for target speaker in voice cloning task. Secondly, for the
input of gating network, MOE employs the same input as each
experts while SG-PSS employs speaker embedding to achieve
speaker clustering purpose. Thirdly, the gating network of MOE
chooses top k out of N experts for each example, while SG-PSS
accepts only one subnet for a target speaker in voice cloning.
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Figure 3: A diagram of Speaker-guided Parallel Subnet Selec-
tion (SG-PSS) in stacked FFT blocks.

3.2. SG-PSS in stacked FFT blocks

The decoder of Fastspeech2 stacks multiple feedforward trans-
former (FFT) blocks. Each FFT block consists of a multi-
head self-attention layer and a 2-layer 1D convolutional net-
work with ReLU activation. Since the decoder is regarded as
more speaker-dependent, adaptation process usually fine-tunes
the 2-layer 1D convolutional network of each FFT block in the
decoder to approach the characteristics of target speaker. In this
paper, SG-PSS is applied to the 2-layer 1D convolutional net-
work in each FFT block. As shown on the left of Figure 3,
the SG-PSS network consists of N parallel subnets. Each sub-
net is also a 2-layer 1D convolutional network but with smaller
size.To guarantee the fairness, the number of parameters in SG-
PSS is usually kept the same with the origin network. It means
the filter size in each subnet of is [Dh/N , Do] when the original
filter size is [Dh, Do].

For multiple stacked FFT blocks, one simple option is that
all the FFT blocks share the same gating network, as shown
in the left of Figure 3. Specifically, the D-dimensional speaker
embedding is fed to the gating network to obtain N-dimensional
gating vector. The same gating vector is employed by all FFT
blocks. By this method, all possible combinations of selected
subnets in different blocks can be N at most. Another option
is to untie the gating network that each FTT block may have
separate gating control. Ideally, the possible combinations of
selected subnets in M FFT blocks increase to be NM . How-
ever, in practice, the gating vectors are still quite similar for
each block since their inputs are exactly the same speaker em-
bedding. Its result is not presented in this paper due to its similar
performance as the approach with the shared gating network. In
order to enhance the diversity of gating vectors among stacked
FFT blocks, another option called diverse SG-PSS (DSG-PSS)
splits the speaker embedding into M segments as the input of
each gating network respectively. As shown on the right of Fig-
ure 3, each segment Embi could be D/M dimensional. In this
way, the gating vector for a FFT block is determined by only
one segment of speaker embedding and the DSG-PSS in differ-
ent blocks may focus on the different parts of speaker charac-
teristics. It is very helpful to achieve the expected combination
diversity.

3.3. Batch Nuclear-norm Maximization Loss

Since the SG-PSS can be regarded as speaker clustering in
source model training, the gating vector is expected to meet
two properties: discriminability and diversity. Herein, the dis-
criminability means SG-PSS should focus on only one subnet

for a sample. While the diversity means every subnet should
be almost equally employed for all samples. For this purpose,
batch nuclear-norm maximization (BNM) loss is introduced as
follows:

LSG−PSS = LG + λbnm ∗ LBNM (7)

The BNM loss is proposed by Cui [19] to boost the learn-
ing under typical label insufficient learning scenarios, such as
semi-supervised learning, domain adaptation and open domain
recognition. Herein, the gating vector represents the classifica-
tion result which is SoftMax-ed output of gating network. For
the gating vector GV of size N, its corresponding BNM loss is
formulated as:

LBNM = − 1

N
||GV ||∗ (8)

||GV ||∗ =
D∑

i=1

σi (9)

where ||GV ||∗ is nuclear-norm of gating vector GV , defined as
the sum of singular value of GV . σi denotes the i-th largest
singular value and D is the number of singular values.

4. Experiments
4.1. Dataset

The multi-speaker dataset including 89 Mandarin speakers (40
females and 49 males) is used for pre-training. Recordings are
about 130 hours in total and collected in a professional record-
ing studio. To mimic the environment noise of user record-
ing, real environment noise is collected and randomly added
to clean speech with SNR in the range of 25dB∼35dB. To eval-
uate the performance of few-shot voice cloning, 12 volunteers
are recruited and 1 minute recording is collected on mobile in
office environment for each of them. The phoneme duration
of all recordings is obtained by Montreal Forced Aligner [20].
All recordings are processed to be 16kHz with 16bits per sam-
ple in mono channel. 80-dimensional mel-spectrogram and 1-
dimensional LF0 are extracted at every 12.5ms. Moreover,
there is no overlap between the pre-training and volunteers
and text prompts for evaluation should be unseen both in pre-
training and adaptation training stages.

4.2. Experimental setup

Both phoneme encoder and mel decoder consist of 6 FFT blocks
following the basic configuration of Fastspeech [3]. Duration
predictor and pitch predictor both have a 2-layer 1D convolu-
tional network with 384 filters for each layer and a linear layer.
In addition, the speaker encoder and residual encoder follow
the Global Style Token (GST) architecture [21] with [48, 4]
and [4, 2] for [tokens, attention heads] respectively. Speaker
and residual classifier both contain two linear layers and a soft-
max layer. Besides, a gradient reversal layer (GRL) [22] is ap-
plied prior to corresponding classifier to do adversarial train-
ing. The multi-speaker model is trained with initial learning
rate of 1 × 10−3 and batch size of 32. Adam optimizer is used
with β1 = 0.9, β2 = 0.98. Dropout probability is 0.1 through
the entire model. The training loss is LG with λrecon = 5,
λspk = 1 and λres = 1.

In adaptation training phase, the parameters of duration pre-
dictor, pitch predictor and the 2-layer 1D convolutional net-
works in FFT blocks of mel decoder are fine-tuned 500 steps
with batch size of 16. The efficient and high fidelity vocoder
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HifiGAN [23] is adopted to generate waveform from predicted
mel-spectrograms.

Four systems are implemented and evaluated as below:
Base-upper: Baseline system. Filter size of 2-layer 1D convo-
lutional network in 6 FFT blocks is [2816, 384].
Base-lower: Similar as baseline, but the filter size of 2-layer
1D convolutional network is reduced to [704, 384], which is the
same as one subnet in SG-PSS.
SG-PSS: Proposed approach. 6 stacked FFT blocks share one
gating network shown in left of Figure 3. The SG-PSS has 4
parallel 2-layer 1D convolutional network with [704, 384] as fil-
ter size. The model size of SG-PSS equals to the Base-upper in
pre-training while equals to the Base-lower in adaptation train-
ing. The training loss is LSG−PSS with λbnm = 0.5.
DSG-PSS: Based on SG-PSS, 6 stacked FFT blocks have sep-
arate gating networks shown in right of Figure 3. The 384-
dimensional speaker embedding is split into 6 segments of 64-
dimensional vector as the input of 6 gating networks.

Table 1: The comparisons of object metrics for four systems.

#Params1

(multi-speaker)
#Params1

(adaptation/inference) RTF2 MCD3

Base-lower 11.873M 11.873M 0.126 5.053

Base-upper 41.083M 41.083M 0.382 4.957

SG-PSS 41.083M 11.873M 0.126 4.962

DSG-PSS 41.083M 11.873M 0.126 4.921

1 #Params means the number of parameters for finetuning modules.
2 RTF is measured over the entire model using a single thread and a

single core on an Intel Xeon Gold 6240 CPU @ 2.60GHz.
3 MCD represents the distortion between predicted and groudtruth

mel-spectrograms. The smaller, the better.

4.3. Evaluation

4.3.1. Objective Evaluation

To measure the model storage, inference speed and synthe-
sis quality of different systems, the number of fine-tuned pa-
rameters, real time factor (RTF) and mel-cepstrum distortion
(MCD) are shown in Table 1. In terms of the number of fine-
tuned parameters, the multi-speaker source model of SG-PSS
and DSG-PSS have the same model size as Base-upper but
larger than Base-lower. While in final adapted model, SG-PSS
and DSG-PSS achieve almost 4x compression ratio and has the
same model size with Base-lower. Correspondingly, in terms
of RTF on CPU, SG-PSS, DSG-PSS and Base-lower is about
3x speedup in comparison with Base-upper. Further, in terms
of MCD, DSG-PSS achieves the best synthesis quality while
Base-Lower is the worst. SG-PSS and Base-upper are on par.

The predicted mel-spectrograms of a randomly selected
sample by four systems are visualized in Figure 4. As shown
in the green rectangles, the mel-sepctrogram of Base-lower is
mostly fuzzy, while Base-upper is much clearer. This phe-
nomenon can be attributed to the roust source model with larger
parameters. The performance of SG-PSS is comparable to
Base-upper. While the DSG-PSS generates the clearest harmon-
ics. It proves that enhancing the diversity of subnet combination
among stacked FFT blocks can benefit the model capability.

4.3.2. Subjective Evaluation

To evaluate the performance of voice cloning, subjective listen-
ing tests (mean opinion score, MOS) are conducted on voice
quality and speaker similarity. We generate 22 samples per sys-
tem and invite 15 native listeners to evaluate all systems.

Figure 4: Mel-spectrograms of a sample generated by four sys-
tems.
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Figure 5: Mean Opinion Score (MOS) test results of voice
quality and speaker similarity for customized TTS voice per-
formance with 95% confidence intervals.

As shown in Figure 5, DSG-PSS achieves the highest MOS
scores both in voice quality and speaker similarity. In addition,
SG-PSS and Base-upper are almost on par and better than Base-
lower obviously. Moreover, the feedback of listeners indicates
that DSG-PSS can produce more natural rhythm, more stable
tone and clearer articulation of vowels in various text context. It
confirms the effectiveness of SG-PSS and separate gating strat-
egy for different blocks. The results of subjective evaluation
are consistent with MCD in Table 1 and the mel-spectrograms
illustration shown in Figure 4.

5. Conclusions
In this paper, we propose speaker-guided parallel subnet se-
lection (SG-PSS) to build a fast and light model for few-shot
voice cloning task. Parallel subnets gated by speaker embed-
ding act as speaker clustering in source model training. Batch
nuclear-norm maximization (BNM) loss is introduced to im-
prove the discriminability and diversity of the speaker cluster-
ing. In combination with speaker embedding segmentation and
separate gating networks, the stacked multiple parallel subnets
in decoder can effectively model large number of speaker char-
acteristics with limited parameters. Furthermore, for a coming
target speaker, it is easy to select the subnet he/she belongs to by
speaker embedding and trim others. Therefore the final model
size is compressed and inference speed is speedup. Experi-
ment results show the best proposed approach (DSG-PSS) can
achieve 4x model compression ratio and 3x speedup in adapta-
tion training and inference speed when it even performs slightly
better in speaker similarity and voice quality than the baseline.
This paper applies the proposed SG-PSS and DSG-PSS into
stacked FFT blocks for voice cloning task. However it is not
difficult to image that it can be applied into other layer types or
network architectures, and also benefit other tasks. Some sam-
ples for subjective evaluation are available via this link1.

1https://lightclone2023.github.io/INTERSPEECH2023-demo/
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