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Abstract
ASR systems in real applications must be adapted on the fly to
correctly recognize task-specific contextual terms, such as con-
tacts, application names and media entities. However, it is chal-
lenging to achieve scalability, large in-domain quality gains,
and minimal out-of-domain quality regressions simultaneously.
In this work, we introduce an effective neural biasing architec-
ture called Dual-Mode NAM. Dual-Mode NAM embeds a top-k
search process in its attention mechanism in a trainable fashion
to perform an accurate top-k phrase selection before injecting
the corresponding wordpiece context into the acoustic encoder.
We further propose a controllable mechanism to enable the ASR
system to be able to trade off its in-domain and out-of-domain
quality at inference time. When evaluated on a large-scale bias-
ing benchmark, the combined techniques improve a previously
proposed method with an average in-domain and out-of-domain
WER reduction by up to 53.3% and 12.0% relative respectively.
Index Terms: speech recognition, contextual adaptation

1. Introduction
Rare words such as person and application names and titles
from a media library can be challenging for Automatic Speech
Recognition (ASR) systems to transcribe, as they are often spe-
cific to an individual user and may only be available at inference
time. On-device personalization of ASR models can help ac-
quiring new phrases [1, 2, 3], but personalization requires train-
ing data in the form of audio samples paired with their transcrip-
tions; the need to train on paired data limits applicability and
introduces a delay before new words can be recognized. On the
other hand, contextual biasing techniques can learn from text
alone and support immediate vocabulary acquisition.

There is growing interest in end-to-end neural biasing
to improve the performance of ASR on contextual long-tail
words [4, 5, 6, 7]. Unlike previous methods that combine an
external language model (LM) with ASR system in a heuristic
way to rescore hypotheses as they are added to the lattice [8, 9],
end-to-end neural biasing incorporates a biasing module into
the ASR model itself and performs edits in the latent feature
space to adapt to a new unseen vocabulary. This close integra-
tion enables joint optimization of the neural biasing module and
the ASR system and allows for building a biasing component in
a data-driven fashion; the resulting models show competitive,
or even improved, recognition performance compared to Finite
State Transducer (FST) LM methods when biasing contextual
phrases of varying types. End-to-end neural biasing approaches
can also leverage accelerator devices (e.g. GPU and TPU) and
support batch inference for reduced latency.

This work builds on the Neural Associative Memory
(NAM) [10] framework. Unlike prior approaches, where the

biasing attention is computed over phrase-level embeddings,
NAM directly attends to wordpiece (WP) embeddings for fine-
grained contextual biasing. NAM also builds a structured mem-
ory that stores bindings between the current and next WPs as
a key-value pair. The use of an attention layer allows NAM
to consume a variable-sized set of contextual phrases; the run
time of this attention layer, and the need for ASR to operate in
real time, then becomes a limit on how large the inference-time
context can be. There is a long line of work on improving the
efficiency of attention in the context of sequence-to-sequence
modeling [11, 12, 13]; FineCoS [14] and NAM+ [15] improve
the efficiency of attention in neural biasing by using of phrase-
level embeddings to narrow the set of token-level embeddings
used when computing the final context embedding. NAM+ [15]
in particular scales to large numbers of contextual phrases using
Two-Pass Hierarchical Attention (THA), in which a summary
representation of each phrase is first built from the embeddings
of its constituent WPs, and then a top-k search selects the K
most-similar phrases before applying WP-level NAM attention.
While THA improves inference speed nearly 16-fold, training
only WP attention while reusing (a summary of) the learned
WP embeddings for phrase-level attention at inference creates
a train-test mismatch, degrading WER. Further, the NAM and
NAM+ training process ties the size of the training-time syn-
thetic context to the training batch size, making it impossible to
make the synthetic context smaller, to reduce training time and
difficulty, or larger, to improve out-of-domain accuracy.

In this work, we introduce Dual-Mode NAM, which im-
proves on NAM+ in three ways. First, Dual-Mode NAM learns
discrete phrase- and WP-level embeddings and attention, where
the phrase and WP attention networks are trained in parallel,
eliminating NAM+’s train-test mismatch in how phrase-level
attention and embeddings are learned and applied. Second,
Dual-Mode NAM introduces a parameter that allows for dy-
namic, inference-time-control of biasing strength to trade off
in-domain and out-of-domain accuracy. Finally, Dual-Mode
NAM introduces a training-time synthetic context construction
strategy that exposes the model to more-diverse data and allows
the size of the per-example synthetic context to vary indepen-
dently of batch size. Together, these changes to Dual-Mode
NAM improve the previously proposed NAM+ with an average
in-domain and out-of-domain Word Error Rate (WER) reduc-
tion by up to 53.3% and 12.0% relative, respectively.

2. Methods
In this section, we show how Dual-Mode NAM extends NAM+
with discrete, learned phrase- and WP-level embeddings and
attention; improved training-time synthetic context generation;
and inference-time-controllable biasing strength.
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2.1. Dual-Mode NAM training

2.1.1. Context encoder

We denote the set of input WP id sequences to the context en-
coder as Z = {cls;wn,1, ..., wn,L}Nn=1, where wn,1 denotes
the start of sequence symbol <S>, L denotes the number of
WPs for each bias phrase (padded with the end of sequence
symbol </S> up to L); N denotes the number of bias phrases
assigned to a given speech utterance; and, similarly to [16, 17],
the cls id is prepended to help the encoder summarize phrase-
level representations. The context encoder encodes Z and splits
the output into phrase embeddings Ep ∈ Rd×N and WP em-
beddingsEw ∈ Rd×N×L, where d denotes the embedding size:

Ep, Ew = ContextEncoder(Z) (1)

2.1.2. Wordpiece-mode attention

The WP attention adapts the NAM multi-headed attention [10],
which models the transition from the current word-pieces Ew

(flattened as RdNL) to the next word-piecesEw s (equivalent to
Ew shifted to the left by one WP and padded with a zero em-
bedding ezero at the end). For example, if the bias phrases are
[Lego House, photograph] and L = 4,Ew would correspond to
[<S>, Lego, House, </S>, <S>, photo, g, raph], and Ew s

would correspond to [ Lego, House, </S>, ezero, photo, g,
raph, ezero]. We modified it with two optimizations:

1. WOw projects the intermediate context to the same dimen-
sion of the acoustic feature xt without additional projection.

2. Learnable no-bias token (ew nb k
h , ew nb v

h ) is concatenated to
(Kw

h , V
w
h ), not (Ew, Ew s), skipping input projections. Ac-

cording to [4, 18], the no-bias token can improve the over-
all quality, by enabling the model to learn not to bias when
there’s a mismatch between the audio and biasing context.

xwt = FeedForwardw(xt) (2)

Ew s = {ewn,2, ..., e
w
n,L, e

zero}Nn=1 (3)

qwt,h = xwt W
Qw
h ,Kw

h = EwWKw
h , V w

h = Ew sWVw
h (4)

Kw e
h = [ew nb k

h ;Kw
h ], V w e

h = [ew nb v
h ;V w

h ] (5)

σw
t,h = softmax(

qwt,hK
w e
h√
dwk

), cwt,h = σw
t,hV

w e
h (6)

cwt = Concat(cwt,1, ..., c
w
t,H)WOw (7)

Where t denotes the time index, h ∈ [1..H] denotes the atten-
tion head index; in addition to Feedforwardw, the trainable
parameters include WQw

h ∈ Rd×dwk , WKw
h ∈ Rd×dwk , WVw

h ∈
Rd×dwv , ew nb k

h ∈ Rdwk , ew nb v
h ∈ Rdwv , WOw ∈ RHdwv ×do .

2.1.3. Phrase-mode attention

To enable the ASR model to effectively narrow down the
WP embeddings for WP attention during inference, a separate
single-headed attention network is trained to attend to the bias
phrases Ep (flattened as RdN ), where the attention context cpt
is used during training and can be discarded during inference.

xpt = FeedForwardp(xt) (8)

qpt = xptW
Qp ,Kp = EpWKp , V p = EpWVp (9)

Kp e = [ep nb k;Kp], V p e = [ep nb v;V p] (10)

cpt = softmax(
qptK

p e

√
dpk

)V p eWOp (11)

In addition to Feedforwardp, the trainable parameters in-
clude WQp ∈ Rd×d

p
k , WKp ∈ Rd×d

p
k , WVp ∈ Rd×dpv ,

ep nb k ∈ Rd
p
k , ep nb v ∈ Rdpv and WOp ∈ Rdpv×do .

2.1.4. Sampling-based dual-mode training

We applied a within-batch sampling strategy for dual mode
training, i.e., for every mini-batch, a fraction of utterances (p)
are trained with the phrase context cpt while the rest of the utter-
ances (1−p) are trained with the WP context cwt . This concept is
similar to sampling streaming / non-streaming encoders in [19].

ct =

{
cpt with probability p
cwt with probability 1− p (12)

xbiasedt = xt + ct (13)

Following NAM [10], the attention context ct is added to
the acoustic features xt to produce the biased features xbiasedt .

2.2. Dual-mode NAM inference

2.2.1. Improved two-pass hierarhical attention (THA)

The prior THA [15] proposes filtering top-k (kp) bias phrases
before applying the WP attention, and it approximates the
phrase search using only the WP attention during inference:

1. The phrase embeddings Ep are approximated by summing
the WP embeddings for each phrase during inference.

2. The WP attention is reused for top-k phrase search, where
Kw

h = EpWKw
h and H is the number of attention heads.

indicesp topk
t = TopK(

1

H

H∑

h=1

qwt,hK
w
h , E

p, kp) (14)

Dual-Mode NAM improves THA by incorporating a single-
headed phrase-mode attention network, where the phrase atten-
tion logits can be used directly for top-k phrase search:

indicesp topk
t = TopK(qptK

p, Ep, kp) (15)

2.2.2. Controllable global biasing strength

Finally, a hyperparameter λ is used to adjust the global biasing
strength, which allows further downscaling the contribution of
the attention context to mitigate out-of-domain regressions.

cscaledt = λct (16)

The formulation is identical to the context scaler in [20].
The only difference is that our hyperparameter is applied during
inference only but not at training time. Applying the scaler only
at inference allows adjusting the model behavior for different
ASR applications without retraining the models.

2.3. Improved synthetic context generation

We sample n-gram phrases from the target transcript and gen-
erate a synthetic context set to train the biasing module. For
example, the prior works (Figure 1) [4, 10, 15] are trained with
a global utterance batch size of 4096, and, at every training step,
a bias phrase bi is sampled from the transcript truth yi to form
a bias batch sj , where each sj is mapped to 32 utterances.
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Figure 1: Prior works: per-batch context generation.

We further generalize by replacing the per-batch method
with per-utterance context generation as follows (Figure 2):

1. Each utterance yi can be associated with a unique batch
of bias phrases si during training, where si consists of a
true bias phrase bi (1 – 8 words) and bias batch size − 1
phrases sampled from the bias pool Bpool. Bpool is a
collection {bi}Bi=1 created every training step; by default
bias batch size = 32, B = 4096. Sampling from the
whole pool per training step improves training diversity; fur-
ther, we can lower the training difficulty for yi by lowering
bias batch size, which is not possible when the bias batch
for each utterance is reused across utterances, as in Figure 1.

2. A fraction (10%) of bias batches are shuffled, which miti-
gates ASR quality degradations when an utterance is associ-
ated with irrelevant bias phrases during inference.
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Figure 2: Dual-Mode NAM: per-utterance context generation.

Similar to [4], bias phrases are removed if they are prefixes
of others within si to avoid overloading the attention network;
si is assigned an empty batch probability of 10% to improve the
ASR in no-context scenarios. For no-context scenarios (0 bias
entities) during training and inference, xbiasedt falls back to xt.

3. Experimental setup
3.1. Datasets

All collected experimental data sets adhere to the Privacy Prin-
ciples in [21] and AI Principles in [22].

3.1.1. Multi-domain training corpora

The models are trained on multi-domain speech data [23] con-
sisting of anonymized English utterances from domains includ-
ing voice search, far-field and long-form. The speech tran-

scripts contain a mix of human-transcribed labels and machine-
transcribed labels produced by teacher ASR models [24].

3.1.2. Multi-context testing corpora

We evaluate on the multi-context TTS testing corpora as
described in Section 3.2.2 of [15]. WO PREFIX consists
of 1.3K utterances chosen from $APPS, $CONTACTS, and
$SONGS (denoted ACS); W PREFIX consists of 2.6K utter-
ances with prefixed patterns including “open $APPS”, “call
$CONTACTS”, and “play $SONGS”; ANTI consists of 1K ut-
terances that simulate general voice assistant traffic.

Each utterance can be associated with up to 3K bias entities
from the ACS categories. WO PREFIX and W PREFIX are
used to measure in-domain WERs: each utterance is assigned
one transcript truth entity, with the remaining non-matching en-
tities being distractors. ANTI is used to measure out-of-domain
WER and the utterances are assigned distractors only.

3.2. Model architecture

As shown in Figure 3, the context ct is injected into the ASR
system with cascaded Conformer encoders [19, 25], which
contains a 12-layer causal encoder for streaming (110.4M
params), a 5-layer non-causal encoder for non-streaming
(30.5M params), and a decoder network [26] (9.4M params)
with a mixed-case WP vocabulary of size 4096 (embedding
size is 640). All experimental ASR models are trained using
the open-source Lingvo toolkit [27], on 8x8 cloud TPU v3 [28]
using a global batch size of 4096. We applied the improved syn-
thetic context training recipe in section 2.3. All parameters are
randomly initialized and trained from scratch using the Adam
optimizer [29]. Models were evaluated at 700K steps. For
simplicity, this is a ASR-model-only evaluation which does not
contain other components such as the endpointer, and in which
the WERs are reported using the non-causal encoder path.

Causal 
encoder

Non-causal 
encoder Decoder Hypothesis

xt

ct

Figure 3: ASR with cascaded Conformer encoders. We adapt
the model by adding context ct to the causal encoder output xt.

Model variants are listed below.
NAM The baseline ASR model that consists of:

1. A NAM WP attention network (section 2.1.2) with 855.6K
params, where Feedforwardw is a 2-layer RELU net-
work with a hidden and output dimension of 256; d = 256,
H = 4, dwk = 128, dwv = 128, do = 512 (same as xt).

2. A 3-layer Transformer [30] context encoder with 3.42M
params, of model dimension 256 and hidden dimension
1024. The context encoder is trained without using cls.

DUAL Dual-Mode NAM. Compared to NAM, the context encoder
is trained with cls; a phrase attention network is added
(1.84M params), where Feedforwardp has identical set-
tings to Feedforwardw; d = 256, dpk = 128, dpv = 2048.
The attention context sampling rates are [cpt , c

w
t ] = [0.2, 0.8].

Inference options are listed below, whereN depends on the
number of input bias entities and L is set to 16 to cover 99.7%
of the bias entities without causing truncation.
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P Inference using only phrase-mode attention. The runtime
complexity is O(N) per frame.

W Inference with wordpiece-mode attention. The runtime com-
plexity is O(N × L) per frame.

T Inference with THA. The runtime complexity isO(N+Kp×
L). NAM (T) follows equation (14). DUAL (T) follows
equation (15) via the phrase attention network. Kp is set
to 32 as a reasonable tradeoff between quality and latency.

TC T plus controllable global biasing strength, set to λ = 0.6.

4. Results
4.1. Quality

As shown in Table 1, DUAL (T) (with a phrase attention aug-
mented THA alone) improves average in-domain WERs over
NAM (T) (a.k.a. NAM+) by up to 59.8% relative (9.2 → 3.7),
but comes with an average out-of-domain WER degradation of
16.0% relative (2.5 → 2.9). However, by down-scaling the
global biasing strength λ to 0.6, the final setting, DUAL (TC),
can achieve the best of both worlds, improving the average in-
domain WERs by up to 53.3% relative (9.2 → 4.3) and the
average out-of-domain WERs by 12.0% relative (2.5→ 2.2).

Table 1: Average multi-context WERs on NAM (T) and DUAL (T
/ TC), computed by averaging over five scenarios where (150,
300, 600, 1500, 3000) bias entities are provided per utterance.

Expt NAM DUAL
T T TC

ANTI 2.5 2.9 2.2
WO PREFIX 9.2 3.7 4.3
W PREFIX 5.4 2.4 2.7

Table 2: Detailed multi-context WER breakdown on NAM (W /
T) and DUAL (W / T / TC), from 0 to 3000 bias entities.

Expt # NAM DUAL
W T P W T TC

ANTI

0 1.8 1.8 2.2 2.2 2.2 2.2
150 2.3 2.2 2.4 2.4 2.2 2.0
300 2.5 2.5 2.5 2.3 2.3 2.1
600 3.1 2.7 2.5 3.2 3.3 2.3

1500 3.0 2.6 2.9 3.4 3.5 2.2
3000 3.0 2.5 3.0 3.2 3.5 2.4

0 21.9 21.9 22.9 22.9 22.9 22.9

WO
150 2.4 2.8 4.4 2.6 2.8 3.0

PREFIX
300 3.1 4.8 4.8 3.0 2.8 3.4
600 3.5 7.3 5.1 3.4 3.4 4.0

1500 5.0 13.1 6.8 4.4 4.3 5.0
3000 6.2 17.8 8.5 5.0 5.1 5.8

0 10.5 10.5 11.4 11.4 11.4 11.4
150 2.0 2.1 2.8 1.7 1.7 2.1

W
300 2.1 3.0 3.1 2.0 2.0 2.3

PREFIX
600 2.8 4.6 3.6 2.3 2.3 2.4

1500 3.6 7.4 4.4 2.8 2.7 3.0
3000 4.4 10.1 4.9 3.5 3.3 3.8

The detailed WER breakdown can be seen in Table 2. No-

tably, DUAL (T) improves the in-domain WERs of the most
difficult scenario (3000 bias entities) by 71.3% (17.8 → 5.1)
relative on WO PREFIX, 67.3% (10.1 → 3.3) relative on
W PREFIX; the out-of-domain WER regressions from NAM
(T) to DUAL (T) can be reversed by DUAL (TC), which per-
forms better in all out-of-domain scenarios (150 to 3000 bias
entities). Although dual-mode training results in a WER in-
crease (1.8 → 2.2) on the no-context scenario for the general
traffic, it is tolerable given that the WER is already very low.

4.2. Effects of hyper-parameters kp and λ

Table 3 shows that the in-domain WERs are not sensitive to the
choice of kp between 4 and 64, except for degrading at kp =
1. The out-of-domain WER, however, monotonically decreases
with increasing kp.

Table 3: Effect of adjusting kp for DUAL (T), shown in the av-
erage multi-context WERs (excluding # bias entities = 0).

kp 1 4 8 16 32 64

ANTI 3.8 3.3 3.2 3.1 2.9 2.8
WO PREFIX 4.6 3.7 3.7 3.7 3.7 3.7
W PREFIX 2.8 2.4 2.4 2.4 2.4 2.4

Table 4 demonstrates that the out-of-domain WERs regres-
sions can be mitigated by down-scaling the biasing strength λ,
at the cost of increased in-domain WERs.

Table 4: Effect of adjusting λ for DUAL (TC), shown in the
average multi-context WERs (excluding # bias entities = 0).

λ 1.0 0.9 0.8 0.7 0.6 0.5

ANTI 2.9 2.7 2.5 2.4 2.2 2.1
WO PREFIX 3.7 3.8 3.8 4.0 4.3 4.9
W PREFIX 2.4 2.4 2.4 2.5 2.7 2.9

5. Limitations
When p is not zero or one, sampling-based training (sec-
tion 2.1.4) trains the individual phrase- and wordpiece-mode at-
tention networks on fewer samples than they would be trained
on without sampling. In our experiments, the phrase attention
network is sampled 20% of the time during training, which re-
sults in significantly less training data exposure compared to the
WP attention network.

In principle, we can mitigate anti-context losses by dis-
abling biasing (i.e., setting ct to zero) when the no-bias token’s
logit dominates either phrase- or wordpiece-level attention. In
our experiments, we found that incorporating the no-bias token
did improve the overall WERs, but it was not a clear enough
signal to gate biasing on; this is a subject for future work.

6. Conclusion
We presented Dual-Mode NAM, a model architecture that can
significantly improve in-domain large scale biasing WERs by
following an accurate top-k phrase search process with word-
piece context injection. Dual-Mode NAM also has an effective
controllable global biasing strength mechanism to mitigate out-
of-domain WER regressions without retraining the model.
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