
Distilling knowledge from Gaussian process teacher to neural network student

Jeremy H. M. Wong, Huayun Zhang, and Nancy F. Chen

Institute for Infocomm Research (I2R), A⋆STAR, Singapore
{jeremy wong,zhang huayun,nfychen}@i2r.a-star.edu.sg

Abstract
Neural Networks (NN) and Gaussian Processes (GP) are differ-
ent modelling approaches. The former stores characteristics of
the training data in its many parameters, and then performs in-
ference by parsing inputs through these parameters. The latter
instead performs inference by computing a similarity between
the test and training inputs, and then predicts test outputs that
are correlated with the reference training outputs of similar in-
puts. These models may be combined to leverage upon their
diversity. However, both combination and the matrix compu-
tations for GP inference are expensive. This paper investigates
whether a NN student is able to effectively learn from the in-
formation distilled from a GP or ensemble teacher. It is com-
putationally cheaper to infer using this student. Experiments on
the speechocean762 spoken language assessment dataset sug-
gest that learning is effective.
Index Terms: Gaussian process, neural network, knowledge
distillation, ensemble combination, spoken language assess-
ment

1. Introduction
Knowledge distillation [1, 2], also known as teacher-student
learning, aims to train a student model to adopt the behaviour of
one or more teacher models. This is useful for model compres-
sion [1], domain adaptation [3], and semi-supervised learning
[1]. It can even compress an ensemble of multiple diverse mod-
els into a single compact model [2], to achieve accurate predic-
tions at low computational cost.

The combined ensemble performance leverages upon the
diversity of behaviour of the constituent models. Having differ-
ent instances in which each ensemble member makes a mistake
presents opportunities for the correct predictions of a model to
amend for the errors of other models. One approach to encour-
age diversity is to design differences into the model structures.
Such differences include using different parameter values [4]
and Neural Network (NN) topologies [5]. Perhaps, even more
diversity may arise between different types of models. This pa-
per investigates combining the predictions of a NN with those
of a Gaussian Process (GP) [6]. However, using multiple mod-
els may entail a high run-time computational cost. Furthermore,
inference through a GP alone may be expensive, with a compu-
tational cost that may scale as the cube of the training set size.
Through knowledge distillation, a student NN may be able to
learn from the behaviours of this diverse ensemble, while hav-
ing a cheaper run-time computational cost. Previous knowl-
edge distillation works often investigate propagating informa-
tion only between NN teachers and students [1, 2, 3, 7, 8, 9, 10].

This work was supported by the A⋆STAR Computational Resource
Centre through the use of its high performance computing facilities.

This paper investigates the possibility of distilling knowledge
from a GP teacher to a NN student. The proposal is evaluated
on a Spoken Language Assessment (SLA) task.

The novelties proposed in this paper are:
• To first investigate the combination of a GP with a NN. This

is needed to construct a teacher ensemble.
• Then more importantly, to assess the feasibility of distilling

knowledge from a GP teacher or ensemble into a NN student.

2. Related work
A GP and a NN are different model types to distil knowledge
across, building upon prior works that seek to expand the diver-
sity of models that can be distilled between. A large NN teacher
can be compressed into a student with fewer layers and nodes
[1]. A recurrent NN can be distilled into a feed-forward NN [7].
A Gaussian mixture model student can learn from a NN teacher
[11]. Knowledge can be distilled between models that use dif-
ferent clusterings of context-dependent states [8]. Offline mod-
els can be distilled into causal models for streaming applica-
tions [9]. Knowledge can also be distilled between autoregres-
sive and non-autoregressive speech recognition models [10]. In
SLA, work in [12, 13] aims to improve tonal mispronunciation
detection, by training a Mandarin tonal acoustic model student
toward the soft tone posteriors generated by a teacher acoustic
model, to address the inaccuracy of labelling non-native tones
as one-hot targets.

This paper uses a combination of neural and non-neural
models in two ways. First, an ensemble comprising a GP and
a NN is combined over the output posteriors. Second, a NN is
used to extract embeddings, which are then used as inputs to a
GP, similarly to [14]. In the experiments here, the NN extractor
is not fine-tuned jointly together with the GP, to avoid overfit-
ting issues [15]. Other forms of neural and non-neural combina-
tions are used in related fields. In speech recognition, NNs can
be used to either extract features for a hidden Markov model
with Gaussian mixture model emission likelihoods in a tandem
model [16, 17], or to directly compute the hidden Markov model
emission likelihoods in a hybrid model [18]. In diarisation, a
NN may not generalise well to more speakers than were seen
during training. This can be addressed by only using the NN
to diarise short segments, and then using unsupervised cluster-
ing approaches to diarise across the segments [19]. A NN can
also be used to extract speaker discriminative features, such as
x-vectors [20], which can then be diarised using unsupervised
clustering [21].

GPs can be computationally expensive to use at run-time,
because of the need to perform multiplication and inversion on
kernel matrices with dimensions equal to the training set size.
This presents a barrier to using a GP with large diverse train-

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

426 10.21437/Interspeech.2023-190

(a) Neural network (b) Gaussian process

Figure 1: Models for spoken language assessment

ing datasets. The kernel dimension can be reduced by sparsify-
ing the training data, to only consider a smaller set of inducing
points [22]. The cost of matrix operations on the kernel can also
be alleviated by reducing its rank, then training this low-rank
GP student to approximate the full-rank GP teacher [23].

3. Gaussian process
A GP, depicted in figure 1b, computes training set outputs, y,
from training set inputs, X, by assuming that there are latent
variables, f , that are Gaussian distributed with a covariance
computed from the similarity between inputs,

p (f |X) = N (f ;0,K (X,X)) . (1)

The outputs are assumed to be conditionally independent of the
inputs when given these latent variables,

p (y|X) ≈
∫

p (y|f) p (f |X) df . (2)

The kernel that represents the covariance in (1) measures a sim-
ilarity between inputs, implying that nearby inputs should have
latent variables that are correlated. This paper measures simi-
larity using the squared exponential kernel,

kij (X,X) = s2 exp

[
− (xi − xj)

⊤ (xi − xj)

2l2

]
, (3)

where s and l are the scale and length hyper-parameters respec-
tively, and i and j are data point indexes. The output can be
chosen to be Gaussian distributed around the latent variable,

p (y|f) = N
(
y;f , σ2I

)
, (4)

where σ is a hyper-parameter representing observation noise
and I is the identity matrix. Substituting this into (2) equates
to

p (y|X) = N
(
y;0,K (X,X) + σ2I

)
, (5)

which can be maximised over the training set to tune the hyper-
parameters. In the marginal likelihood of (5), the mean of the
output is independent of the input, because the chosen form of
the GP prior in (1) also has a mean that is independent of the in-
put. Instead, the form of the marginal likelihood is such that if
two inputs are close together as measured by the kernel, then
their outputs should be correlated. Thus, this marginal like-
lihood may not explicitly compute a mapping from the input
to the output, in the way that a NN does, illustrated in figure
1a. What the GP hyper-parameters learn by maximising this
marginal likelihood on the training data may be different from
the input to output mapping learned by the NN parameters.

During run-time, the density of the hypothesised output, ŷ,
can be computed from the test set inputs, X̂, by first computing
a density of the test set latent variables, f̂ , as

p
(
f̂
∣∣∣X̂,y,X

)
=

p
(
y, f̂

∣∣∣X, X̂
)

p (y|X)
(6)

= N
(
f̂ ; µ̂, V̂

)
, (7)

where

µ̂ = Kx̂x [Kxx + σ2I
]−1

y (8)

V̂ = Kx̂x̂ −Kx̂x [Kxx + σ2I
]−1

Kxx̂, (9)

and

p
(
y, f̂

∣∣∣X, X̂
)
= N

([
y

f̂

]
;0,

[
Kxx + σ2I Kxx̂

Kx̂x Kx̂x̂

])
.

(10)
The notations of Kxx = K(X,X), Kx̂x̂ = K(X̂, X̂), and
Kxx̂ = K(X, X̂) = Kx̂x⊤

are used for brevity. The output
density function is computed as

p
(
ŷ
∣∣∣X̂,y,X

)
=

∫
p
(
ŷ
∣∣∣f̂

)
p
(
f̂
∣∣∣X̂,y,X

)
df̂ (11)

= N
(
ŷ; µ̂, V̂ + σ2I

)
. (12)

The hypothesised output can then be inferred by computing the
mean, mode, or median of (12), which are equivalent, because
of the symmetry and unimodality of a Gaussian.

4. Spoken language assessment setup
The proposed approach is evaluated on a Spoken Language As-
sessment (SLA) setup. The motivations for this choice are as
follows. First, SLA is a regression task, but is often treated in a
somewhat classification manner through the rounding of the ref-
erence and hypothesis scores. This allows a reasonable match
between the use of a categorical NN and a standard GP. Second,
the training set size for SLA is often within a range that is man-
ageable for a GP, during both hyper-parameter optimisation and
run-time inference, without needing to resort to sparse approx-
imations. This alleviates any impact that such sparse approxi-
mations may have on the experimental trends. Third, previous
work in [24] has already investigated applying a GP to SLA,
demonstrating a proof of concept.

SLA aims to predict a score for an input spoken audio that
is related to the oral proficiency of the speaker. Aspects of oral
proficiency that are often assessed include pronunciation accu-
racy, intonation, fluency, prosody, sentence completeness, task
completion, and topic relevance. A model in automatic SLA is
trained to compute a score that is similar to one that an expert
human rater would have assigned.

The experiments used the speechocean762 dataset [25].
The training and test sets each encompass 2500 sentences, spo-
ken by 125 disjoint speakers. The speakers read the sentences
in English, but are natively from a Mandarin speaking back-
ground. The data is annotated with proficiency scores at the
phoneme, word, and sentence levels, but only the sentence
scores were used in the experiments here. Each sentence is
annotated by 5 human raters on a range from 0 to 10, assess-
ing the pronunciation accuracy, fluency, prosody, and sentence
completeness. The experiments were replicated across the pro-
nunciation accuracy, fluency, and prosody scores to validate that

427

the trends generalise across score types. The sentence com-
pleteness was avoided, because of the label imbalance. A single
scalar reference for each sentence was computed as the average
of the scores from the 5 raters. This differs from [25], which
instead computes the median. As is done in [25], the hypothesis
and reference scores were first rounded to the closest integers,
before computing the evaluation metrics. The model’s perfor-
mance was assessed using the Pearson’s Correlation Coefficient
(PCC) and Mean Squared Error (MSE), following [25]. A two-
tailed paired t-test was used to assess the statistical significance
between MSE values. It is non-trivial to use a t-test to compare
PCCs, because it is not expressed as a sum over data points, and
thus eludes application of the central limit theorem. Instead,
an approximately normally distributed transformation was first
computed from the pair of PCCs being compared [26], then the
two-tailed cumulative density was reported as the significance.
This approach is referred to as Z∗

1 in [27].
To perform SLA on read speech, the audio was first forced

aligned to the reference transcript, using a hybrid model that
was trained on the 960 hours Librispeech data [28], following
[25]. This forced alignment was used to compute Goodness
Of Pronunciation (GOP) [29], Log Phone Posterior (LPP) [30],
Log Posterior Ratio (LPR) [30], and tempo [31] features for
each phoneme. For each phoneme, pitch features [32] were ex-
tracted per frame, then averaged over all frames in the phoneme.
Phoneme embeddings [31] were extracted from a 32-node re-
current NN continuous skip-gram model [33], trained on the
non-silence phoneme sequences. Following [31], these features
were concatenated to form one vector per phoneme in the sen-
tence.

NN SLA models used a sequence of these feature vectors
as input to a Bidirectional Long Short-Term Memory (BLSTM)
layer, with 32 nodes per direction. Equal-weighted mean pool-
ing was used to compute a sentence-level embedding from the
BLSTM output sequence. A linear layer then computed the
desired output dimension from this embedding. Either a 1-
dimensional linear output was parsed through a sigmoid and
scaled to the score range to be trained with MSE as a regression
model, or an 11-dimensional linear output was parsed through a
softmax and trained with Cross-Entropy (CE) for a categorical
classification model. A dropout [34] rate of 60% was used at the
inputs to the BLSTM and linear layers. A 10% held out valida-
tion set was used for NN training, without speaker disjointment.
During run-time, a scalar hypothesis score was inferred from the
categorical NN as the mean of the discrete output posterior.

A GP does not naturally work with sequential inputs. The
kernel can be modified to compute similarities over sequences
[35] or hand-crafted sentence-level features can be extracted
[24]. A NN can also be used to extract features as inputs to
a GP [14]. In this paper, the sentence-level embedding from
the pooling layer of the NN was used as the input to the GP.
Embeddings from the MSE-trained regression NN were used,
as initial tests suggested that these yielded slightly better GP
performance than when using embeddings from the categorical
NN, though not significantly. The GP hyper-parameters were
optimised by maximising the marginal likelihood of (2), using
gradient descent.

5. Ensemble combination
A NN stores learned knowledge about the training data into its
parameters, and then leverages upon this learned input to out-
put mapping during run-time. This requires there to be a suffi-
cient quantity of parameters to capture the complexities of the

training data. As opposed to this, the GP only has three hyper-
parameters that can be tuned toward the data. These may not
suffice to learn much about the training data. Instead, the GP
uses the training data itself during run-time, by comparing the
similarities between the test set and training set inputs, to hy-
pothesise test set outputs that correlate with the reference out-
puts of nearby training set inputs. These different approaches
to data processing may yield diverse error patterns in their hy-
potheses.

The categorical-output NN computes discrete posteriors
over the output classes, which for SLA represent the integer
scores. The GP here is designed for regression, and thus com-
putes a likelihood over continuous scores. This reveals another
difference between the chosen NN and GP designs, in that the
categorical NN assumes neither monotonicity nor linearity of
the output space, while the GP does. For consistency, the GP’s
output density of (12) is first discretised to look more like a clas-
sification model, by cumulating over the continuous scores that
would have been rounded to each integer,

PGP (c|x̂i) =

∫ c+0.5

c−0.5
p (ŷi|x̂i,y,X) dŷi

∑
c′

∫ c′+0.5

c′−0.5
p (ŷ′

i|x̂i,y,X) dŷ′
i

, (13)

where c are the possible integer scores. Unlike a categorical
NN, this discrete posterior assumes monotonicity of the scores.
This method of discretisation matches the practice of rounding
the hypothesised scores before evaluation [25]. In (13), equal
bin widths are used, as opposed to allowing the extreme bins
to span supports up till ±∞, to avoid biasing the score toward
these extremes. As a result, integration is not performed over
the infinite support of the Gaussian, and thus the denominator
in (13) is needed for PGP (c|x̂i) to sum to one. An initial test
comparing inference from the GP as either a discrete mean of
(13) or a continuous mean of (12) did not yield any significant
performance difference. It is possible to formulate the GP to
perform multi-class classification [6] directly, but this is more
computationally expensive, requires approximation in its im-
plementation, and may forego the monotonicity assumption.

This paper considers a combination over probability distri-
butions. The discrete posteriors from the GP and NN are com-
bined as a mixture,

P (c|x̂i) = λPGP (c|x̂i) + (1− λ)PNN (c|x̂i) , (14)

where PNN (c|x̂i) is the NN posterior, and λ is the combination
weight, such that 0 ≤ λ ≤ 1. The combined hypothesis can
then be inferred from the combined posterior, P (c|x̂i). In this
paper, the hypothesis was inferred as the mean of the posterior,
as initial tests suggested a better performance for SLA than in-
ferring as the mode.

Combination over the outputs of diverse models may be
viewed as a Monte Carlo approximation of a Bayesian NN [36].
Such combination aims to reduce the prevalence of model un-
certainty, exemplified by the diversity of predictions due to the
biases of different models, and yield a purer representation of
data uncertainty in the combined output. A GP on its own may
also be interpreted as a marginalisation over a distribution of
functions [6]. However, all functions represented within the GP
are influenced by the same choices made about the GP’s design,
and thus may be similarly biased. It may therefore still be ben-
eficial to combine a GP with a different model type.

The combination results are shown in table 1. A combi-
nation weight of λ = 0.5 was used, thereby assuming equal
importance between the GP and NN. The results suggest that

428

Table 1: Combination of a GP and a NN

Score type Model PCC↑ MSE↓

accuracy
NN 0.701 1.208
GP 0.710 1.149
NN + GP 0.724 1.085

fluency
NN 0.754 0.810
GP 0.779 0.727
NN + GP 0.784 0.706

prosody
NN 0.753 0.798
GP 0.775 0.722
NN + GP 0.791 0.669

the GP performs comparably against the NN. The combined en-
semble outperforms both the NN and GP. The significances of
the performance differences between the GP and the combina-
tion are ρPCC = 0.005 and ρMSE = 0.002 for pronunciation
accuracy, ρPCC = 0.291 and ρMSE = 0.168 for fluency, and
ρPCC < 0.001 and ρMSE < 0.001 for prosody. The combi-
nation gains may be significant for pronunciation accuracy and
prosody. This suggests that the behaviours of a NN and a GP
can be complementary.

6. Knowledge distillation

Figure 2: Knowledge distillation from a teacher ensemble con-
taining a Gaussian process, to a student neural network

Processing multiple models in an ensemble can be com-
putationally expensive. Furthermore, the GP itself may incur
a high run-time cost. The GP requires training data to be pro-
cessed while performing inference. This may entail a high com-
putational cost that scales quadratically with the training set size
for the matrix multiplications in (8) and (12). The matrix in-
verse in these equations, which can be pre-computed before
run-time, has a computational cost that scales cubically with
the training set size. Sparse approximations have previously
been investigated to reduce the number of required training data
points to be used at run-time and reduce this computational cost
[22]. The run-time cost of a NN does not depend on the train-
ing set size. Distilling knowledge from a GP or ensemble into
a single NN may thus capture the GP or ensemble behaviour,
without requiring the expensive run-time computation. This is
shown in figure 2. To perform knowledge distillation, a cat-
egorical NN student model is trained by minimising the dis-
crete Kullback-Leibler (KL) divergence between the teacher’s
and student’s posteriors [1],

FKL = − 1

N

N∑

i=1

∑

c

Pteacher (c|xi) logPstudent (c|xi) , (15)

Table 2: NN student performance when trained toward a single
NN or GP teacher, or toward an ensemble of both

NN student performance
Score type Teacher PCC MSE

accuracy
NN 0.701 1.208
GP 0.719 1.119
NN + GP 0.728 1.089

fluency
NN 0.757 0.807
GP 0.794 0.680
NN + GP 0.791 0.692

prosody
NN 0.755 0.803
GP 0.800 0.659
NN + GP 0.796 0.666

where N is the training set size.
Table 2 shows the student performance when training a sin-

gle student NN toward either a single NN or GP teacher, or
toward an ensemble combination of both using (14). The re-
sults suggest that a NN student is able to learn effectively from
a GP teacher, with the student surpassing the teacher’s perfor-
mance on both metrics in this instance, though not always sig-
nificantly, with ρPCC = 0.150 and ρMSE = 0.316 for pronun-
ciation accuracy, ρPCC = 0.007 and ρMSE = 0.051 for fluency,
and ρPCC < 0.001 and ρMSE = 0.006 for prosody. This demon-
strates that knowledge distillation is able to propagate informa-
tion over the different model types. The single NN student is
also able to closely match the performance of an ensemble of
NN and GP teachers. Thus, knowledge distillation can be used
to yield a level of performance close to that of the ensemble,
while only requiring the run-time cost of a single NN. Initial
tests did not yield any improvements when training the student
with an interpolation of the CE criterion.

7. Conclusion
This paper has explored knowledge distillation from a GP
teacher or ensemble of NN and GP teachers, to a NN student.
The experiments suggest that a NN student is able to learn ef-
fectively from a GP teacher. The NN student can thus be used
during run-time, thereby requiring a cheaper computation cost
than a GP or ensemble.

A GP is formulated to express greater uncertainty for test
inputs that reside far from the training inputs, represented in the
variance of (9). This expression of distributional uncertainty
[37] may seem reasonable. As opposed to this, a NN may ex-
press high confidence in its hypothesis for out-of-domain data
[38]. A future investigation may consider whether a NN is able
to learn this desirable distributional uncertainty behaviour from
a GP. Perhaps, this may be approached by training a student NN
toward a GP teacher on unlabelled data that is mismatched with
the domain of the training data.

8. References
[1] J. Li, R. Zhao, J.-T. Huang, and Y. Gong, “Learning small-size

DNN with output-distribution-based criteria,” in Interspeech, Sin-
gapore, Sep 2014, pp. 1910–1914.

[2] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” in Deep Learning and Representation Learn-
ing Workshop, NIPS, Montréal, Canada, Dec 2014.

[3] J. Li, M. L. Seltzer, X. Wang, R. Zhao, and Y. Gong, “Large-scale
domain adaptation via teacher-student learning,” in Interspeech,
Stockholm, Sweden, Aug 2017, pp. 2386–2390.

429

[4] L. K. Hansen and P. Salamon, “Neural network ensembles,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 12, no. 10, pp. 993–1001, Oct 1990.

[5] L. Deng and J. C. Platt, “Ensemble deep learning for speech
recognition,” in Interspeech, Singapore, Sep 2014, pp. 1915–
1919.

[6] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for
machine learning. MIT Press, 2006.

[7] W. Chan, N. R. Ke, and I. Lane, “Transferring knowledge from
a RNN to a DNN,” in Interspeech, Dresden, Germany, Sep 2015,
pp. 3264–3268.

[8] J. H. M. Wong and M. J. F. Gales, “Student-teacher training with
diverse decision tree ensembles,” in Interspeech, Stockholm, Swe-
den, Aug 2017, pp. 117–121.

[9] G. Kurata and G. Saon, “Knowledge distillation from offline to
streaming RNN transducer for end-to-end speech recognition,” in
Interspeech, Shanghai, China, Oct 2020, pp. 2117–2121.

[10] X. Gong, Z. Zhou, and Y. Qian, “Knowledge transfer and distil-
lation from autoregressive to non-autoregressive speech recogni-
tion,” in Interspeech, Incheon, South Korea, Sep 2022, pp. 2618–
2622.

[11] J. H. M. Wong, M. J. F. Gales, and Y. Wang, “Learning between
different teacher and student models in ASR,” in ASRU, Singa-
pore, Dec 2019, pp. 93–99.

[12] W. Li, N. F. Chen, S. M. Siniscalchi, and C.-H. Lee, “Improving
Mandarin tone mispronunciation detection from non-native learn-
ers with soft-target tone labels and BLSTM-based deep models,”
in ICASSP, Calgary, Canada, Apr 2018, pp. 6249–6253.

[13] ——, “Improving mispronunciation detection of Mandarin tones
for non-native learners with soft-target tone labels and BLSTM-
based deep tone models,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 27, no. 12, pp. 2012–
2024, Dec 2019.

[14] R. Salakhutdinov and G. E. Hinton, “Using deep belief nets to
learn covariance kernels for Gaussian processes,” in NIPS, Van-
couver, Canada, Dec 2007.

[15] S. W. Ober, C. E. Rasmussen, and M. van der Wilk, “The promises
and pitfalls of deep kernel learning,” in UAI, Jul 2021, pp. 1206–
1216.

[16] S. Sharma, D. P. W. Ellis, S. Kajarekar, P. Jain, and H. Herman-
sky, “Feature extraction using non-linear transformation for robust
speech recognition on the AURORA database,” in ICASSP, Istan-
bul, Turkey, Jun 2000, pp. 1117–1120.

[17] D. P. W. Ellis, R. Singh, and S. Sivadas, “Tandem acoustic mod-
eling in large-vocabulary recognition,” in ICASSP, Salt Lake City,
USA, May 2001, pp. 517–520.

[18] H. A. Bourlard and N. Morgan, Connectionist speech recognition:
a hybrid approach. Kluwer Academic Publishers, 1994.

[19] S. Horiguchi, S. Watanabe, P. Garcı́a, Y. Xue, Y. Takashima, and
Y. Kawaguchi, “Towards neural diarization for unlimited numbers
of speakers using global and local attractors,” in ASRU, Cartagena,
Colombia, Dec 2021, pp. 98–105.

[20] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: robust DNN embeddings for speaker recogni-
tion,” in ICASSP, Calgary, Canada, Apr 2018, pp. 5329–5333.

[21] D. Garcia-Romero, D. Snyder, G. Sell, D. Povey, and A. McCree,
“Speaker diarization using deep neural network embeddings,” in
ICASSP, New Orleans, USA, Mar 2017, pp. 4930–4934.

[22] M. Bauer, M. van der Wilk, and C. E. Rasmussen, “Understanding
probabilistic sparse Gaussian process approximations,” in NIPS,
Barcelona, Spain, Dec 2016.

[23] C. Song and Y. Sun, “Kernel distillation for fast Gaussian pro-
cesses prediction,” in BNP@NeurIPS, Montréal, Canada, Dec
2018.

[24] R. C. van Dalen, K. M. Knill, and M. J. F. Gales, “Automatically
grading learners’ English using a Gaussian process,” in SLaTE,
Leipzig, Germany, Sep 2015, pp. 7–12.

[25] J. Zhang, Z. Zhang, Y. Wang, Z. Yan, Q. Song, Y. Huang, K. Li,
D. Povey, and Y. Wang, “speechocean762: an open-source non-
native English speech corpus for pronunciation assessment,” in
Interspeech, Brno, Czechia, Aug 2021, pp. 3710–3714.

[26] O. J. Dunn and V. Clark, “Correlation coefficients measured on
the same individuals,” Journal of the American Statistical Associ-
ation, vol. 64, no. 325, pp. 366–377, Mar 1969.

[27] J. H. Steiger, “Tests for comparing elements of a correlation ma-
trix,” Psychological Bulletin, vol. 87, no. 2, pp. 245–251, 1980.

[28] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an ASR corpus based on public domain audio books,”
in ICASSP, Brisbane, Australia, Apr 2015, pp. 5206–5210.

[29] S. M. Witt and S. J. Young, “Phone-level pronunciation scoring
and assessment for interactive language learning,” Speech Com-
munication, vol. 30, no. 2-3, pp. 95–108, Feb 2000.

[30] W. Hu, Y. Qian, F. K. Soong, and Y. Wang, “Improved mispro-
nunciation detection with deep neural network trained acoustic
models and transfer learning based logistic regression classifiers,”
Speech Communication, vol. 67, pp. 154–166, Mar 2015.

[31] H. Zhang, K. Shi, and N. F. Chen, “Multilingual speech evalua-
tion: case studies on English, Malay and Tamil,” in Interspeech,
Brno, Czechia, Aug 2021, pp. 4443–4447.

[32] P. Ghahremani, B. BabaAli, D. Povey, K. Riedhammer, J. Trmal,
and S. Khudanpur, “A pitch extraction algorithm tuned for auto-
matic speech recognition,” in ICASSP, Florence, Italy, May 2014,
pp. 2494–2498.

[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estima-
tion of word representations in vector space,” in ICLR, Scottsdale,
USA, May 2013.

[34] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural net-
works from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929–1958, Jun 2014.

[35] H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. Watkins, “Text
classification using string kernels,” in NIPS, Denver, USA, Nov
2000, pp. 563–569.

[36] D. J. C. MacKay, “Bayesian interpolation,” Neural Computation,
vol. 4, no. 3, pp. 415–447, May 1992.

[37] A. Malinin and M. Gales, “Predictive uncertainty estimation via
prior networks,” in NeurIPS, Montréal, Canada, Dec 2018.

[38] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in ICML, Sydney, Australia, Aug
2017, pp. 1321–1330.

430

