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Abstract
Most state-of-the-art speech enhancement (SE) methods utilize
time-frequency (T-F) features or waveforms as input features
and have poor generalizability at negative signal-to-noise ra-
tios (SNR). To overcome these issues, we propose a novel net-
work that integrates biophysical properties of the human audi-
tory system known to perform even at negative SNRs. We gen-
erated biophysical features using CoNNear, a neural network
auditory model, which were fed into a SOTA speech enhance-
ment model AECNN. The model was trained on the INTER-
SPEECH 2021 DNS Challenge dataset and evaluated on mis-
matched noise conditions at various SNRs. The experimental
results revealed that the bio-inspired approaches outperformed
T-F and waveform features under positive SNRs and demon-
strated stronger robustness to unseen noise at negative SNRs.
We conclude that incorporating human-like features can extend
the operating range of SE systems to more negative SNRs.
Index Terms: speech enhancement, biophysically-inspired fea-
ture, convolution neural network, time domain

1. Introduction
Speech enhancement is the process of improving the quality and
intelligibility of speech signals that have been degraded by var-
ious factors, such as noise, reverberation, and distortion. There
are numerous applications that benefit from speech enhance-
ment, including automatic speech recognition (ASR), audio-
visual conference systems and hearing aids [1, 2].

Deep-neural-network (DNN) based speech enhancement
approaches have recently achieved great performance due to
their complex function learning abilities. However, the SOTA
speech enhancement methods were mostly formulated using
time-frequency (T-F) representation obtained from the noisy
signal through short-time Fourier transform (STFT). T-F-based
approaches generally estimate the ideal ratio mask that provides
the proportion of the clean speech in each T-F bin. T-F methods
have certain limitations: Most T-F approaches only modify the
magnitude of the noisy signal and disregard the phase informa-
tion. The phase information is crucial, particularly at negative
SNRs [3]. T-F methods that do include the phase information
e.g. complex-valued spectrum modeling [4] or a trigonometric
phase reconstruction [5], have improved performance, but still
perform sub-optimal for negative SNRs. Secondly, a high spec-
tral resolution is required in T-F methods to achieve successful
enhancement. This requires long analysis/synthesis windows to
calculate the spectrogram and results in relatively high system
latency. This limits applications of these methods, e.g. for hear-
ing aids that have high constraints on signal delay. To overcome
long latency issues, several methods have been proposed such as
asymmetric analysis-synthesis window pair [6] and hierarchical

recurrent neural network with the use of low-frequency resolu-
tion [7], but these latency optimizations resulted in noticeable
performance drops.

An alternative to traditional T-F domain approaches is to
consider a time-domain formulation. This method avoids the
need for frequency-domain transformation, and allows for the
joint optimization of magnitude and phase information. Sev-
eral studies have focused on training models that directly esti-
mate the clean speech waveform by implicitly extracting fea-
tures within the enhancement network [8, 9, 10]. Baby et al.
employed biophysically-inspired human auditory features, e.g.
cochlear transmission-line (TL) features, motivated by the su-
perior performance of the human auditory system in adverse
listening scenarios [11]. TL features were generated from an
analytical model which simulates the processing of the human
cochlear [12, 13, 14]. However, the cascade architecture of the
analytical model results in high computational complexity and
limits its integration into closed-loop and real-time audio pro-
cessing systems. To address this obstacle, Baby et al. proposed
the CoNNear, a neural network representation of a non-linear
TL model which faithfully captures the properties of human
cochlear processing [15]. The differential and parallel archi-
tecture of CoNNear enables integration into closed-loop audio
processing systems. However, these biophysical CoNNear fea-
tures have to date not been used in closed-loop SE systems, even
though we expect improved robustness for operation at negative
SNRs.

This paper thus introduces a biophysically-inspired time-
domain speech enhancement model with CoNNear features
(CoSE) that integrates biophysical inspiration and deep learn-
ing. The time-domain features extracted from CoNNear are fed
into the noise reduction module which is an autoencoder convo-
lutional neural network (AECNN) [16]. This SOTA SE model
was employed as a generator of the generative adversarial net-
work (GAN) model [17]. The main contributions of this paper
are as follows: 1) developing a single-channel biophysically-
inspired speech enhancement system, 2) comparison of SE per-
formance using CoNNear features to other features, such as the
widely-used T-F feature or the waveform, and 3) investigating
the performance of CoSE-L, a low-latency configuration that
utilizes overlap-save for signal reconstruction which is ideal for
applications that require a minimal signal delay, such as hearing
aids.

2. Biophysically-inspired framework
The aim of speech enhancement is to estimate the clean speech
signal s(t) from the noisy input signals y(t) = s(t) + n(t),
where n(t) is the additive noise.

The proposed model is comprised of a biophysical feature
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Figure 1: Diagram of the proposed CoSE

extractor and a noise reduction module as illustrated in Figure
1. The model utilizes a frame of noisy speech y(t) as input
and outputs the estimated clean speech ŝ(t). The first stage in-
volves the extraction of biophysical auditory features by CoN-
Near, converting the acoustic signals into NCF representations
of cochlear basilar membrane (BM) displacement waveforms
with center frequencies (CF) ranging between 0.1 and 8kHz.
The reason for this is that the input speech is sampled at 16kHz,
which has a Nyquist frequency of 8kHz. Subsequently, AECNN
will execute noise reduction and directly predict the enhanced
waveform. The number of parameters is 11.5M for CoNNear
and 8.9M for AECNN.

2.1. Bio-physical feature extraction module

The biophysical features of the noisy speech yk(t) are ex-
tracted using CoNNear, which is a convolutional network with
an encoder-decoder architecture. The encoder component of
CoNNear comprises four 1-D convolutional layers with a stride
of 2, which compress the temporal dimension of the input.
The decoder includes four deconvolutional layers to recover the
original size of the input signals. Each (de)convolutional layer
in CoNNear consists of 128 filters with a length of 64, followed
by a Tanh activation function, except for the last layer of the
decoder. To preserve phase information, which is crucial for
speech perception [18], skip connections are implemented to
carry temporal information from the encoder to the correspond-
ing decoder layers. These skip connections not only mitigate
the problem of gradients but also accelerate convergence. In
order to overcome discontinuities near the frame boundaries,
context information is added. We implemented a modification
compared to the original model by only using historical context
(N=256) to reduce overall computation latency.

2.2. Noise reduction network

The noise reduction is achieved through an autoencoder convo-
lutional network (AECNN) that was earlier described in [17].
The output obtained from CoNNear serves as the input to
AECNN. The encoder component of AECNN comprises nine 1-
dimensional convolutional layers, which downsample the tem-
poral axis size to T/29 with a stride of 2. The decoder compo-
nent, which has a mirror structure of the encoder, restores the
input length of the signal. The leaky ReLU activation function
is applied after each (de)convolution layer, except for the last
layer of the decoder, as the time-domain signals contain both
positive and negative values. Skip connections are employed

to pass the output of each encoder layer to the corresponding
decoder layer. The output of the decoder from each layer is
concatenated with the outputs from the corresponding symmet-
ric layer in the encoder. Each layer has a fixed kernel size of 31
and the number of features for each layer in the encoder is 128,
128, 128, 128, 128, 128, 128, 256, 256, which are mirrored in
reverse order in the decoder.

3. Experiments
3.1. Dataset

The training of CoNNear was performed using the TIMIT
dataset [19], which provides an adequate representation of the
acoustic diversity of speech while being phonetically balanced.
A total of 2310 and 550 utterances were selected for the train-
ing and validation sets, respectively. The training target was
the output of a biophysical TL model of the cochlea processing,
which simulates the BM displacements corresponding to 201
center frequencies between 100Hz and 12 kHz. The input sig-
nals to the nonlinear TL model were generated by upsampling
the original 16 kHz audio recordings to 100 kHz and adjusting
their root mean square (RMS) energy to 70 dB SPL.

The training of the CoSE system was carried out using the
INTERSPEECH 2021 DNS Challenge dataset [20, 21], where
the parameters of CoNNear were frozen. This dataset com-
prised 11,350 speakers and over 600 noise scenarios. Three
subsets of clean speech datasets were selected for the experi-
ment, including read speech (English), emotional speech, and
non-English speech (Mandarin). For the noise dataset, the Au-
dioset [22] was selected for training, and the Freesound [23]
was selected for testing. The noisy speech was created by se-
lecting a random noise sample from the noise dataset and com-
bining it with a randomly chosen clean utterance at a random
SNR. A total of 150 hours of data was generated for training
and 5 hours for validation, with SNRs ranging from -5 dB to
10 dB in 1 dB increments. The 1-hour test set was generated at
each SNR of -5 dB, 0 dB, and 5 dB.

3.2. Experimental details

The training of the models was performed in two phases. First,
CoNNear was trained according to [15], in which the training
target was TL model simulations in response to speech utter-
ances. Subsequently, the noise reduction model was trained us-
ing CoNNear features as inputs, where the parameters of CoN-
Near were frozen. Both models employed the minimization of
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mean absolute error (MAE) as a loss function, with a batch size
of 16 at the utterance level. The negative slope of the leaky
ReLu function was set to 0.3. During training, an initial learn-
ing rate of 0.0001 was utilized with the Adam optimizer [24].
The learning rate was halved if the validation loss did not de-
crease for two consecutive epochs. The speech utterances were
segmented into frames of length 512, with an overlap of 50%.
The models were trained on NVIDIA V30.

3.3. Evaluation metrics

The speech enhancement performance was evaluated by the
following metrics: DNSMOS [25] and perceptual evaluation
of speech quality (PESQ) [26]. DNSMOS serves as a non-
intrusive measure to assess noise reduction performance, en-
compassing CSIG, CBAK, and COVL, exhibiting a robust as-
sociation with human ratings. The COVL evaluates the over-
all quality of the enhanced speech signal, whereas the CSIG
gauges the degree of speech distortion, and the CBAK predicts
the scores of background noise distortion. A higher value of
DNSMOS and PESQ signifies better performance. The models
were evaluated for SNR of -5 dB, 0 dB and 5dB. For each SNR,
we tested 720 utterances (1 hour) mixed with unseen noise from
Freesound [23].

3.4. Comparison with other features

In our comparison study, the biophysical CoNNear features
were evaluated in conjunction with two other features as base-
lines: log-magnitude spectrogram (T-F features) and wave-
form. To ensure a fair comparison, similar noise reduction
modules were utilized with minor modifications between mod-
els. Specifically, for T-F features, the model was trained to pre-
dict the ideal ratio mask to enhance noisy spectrograms. Filter
length of 3 was used and the non-linearity was the ReLU re-
spectively. For the waveform feature, the filter number of the
encoder was altered to 16, 32, 32, 64, 64, 128, 128, 256, 256.

3.5. Low latency configuration

To make our model suitable for future applications with high
constraints on signal delay, e.g. hearing aids that require a total
latency lower than 10ms. We also developed a low-latency sys-
tem (CoSE-L). In this system, we used the overlap-save method
to reconstruct the signal using a future context of 2ms and a
frame shift of 4ms, which results in a total system delay of 6ms.
Additionally, to minimize model size and computational com-
plexity, we reduced the filter length to 15 and decreased the
number of layers in the encoder or decoder to 7, consisting of
128, 128, 128, 128, 128, 256, 256. We compared the perfor-
mance of CoSE-L to the full CoSE system to evaluate whether
latency optimization still yielded satisfactory SE performance
on all considered metrics.

4. Results and discussions
We compared noise reduction performance with the various in-
put features on mismatched noise conditions. Table 1 shows that
the biophysical-inspired CoNNear features performed the best
among the evaluated features, especially at negative SNR condi-
tions. CoSE demonstrated an 0.02 improvement in COVL over
waveform features and 0.24 over T-F features at an SNR of 5
dB. Additionally, CoSE achieved a boost of 0.13 over waveform
features and 0.34 over T-F features at an SNR of -5 dB. It can be
observed that T-F features demonstrated commendable results

Table 1: Comparison of different features in terms of various
objective metrics. Higher values indicate superior performance
and bold fonts highlight the best performance.

Metrics Approaches SNRs (dB)
-5 0 5 Avg.

PESQ

noisy 1.12 1.35 1.54 1.34
CoNNear-L 1.25 1.42 1.73 1.47
CoNNear 1.46 1.72 2.25 1.81

T-F 1.34 1.54 2.01 1.63
waveform 1.35 1.55 2.04 1.65

COVL

noisy 1.41 1.60 1.92 1.64
CoNNear-L 2.06 2.33 2.58 2.32
CoNNear 2.84 3.08 3.20 3.04

T-F 2.50 2.76 2.96 2.74
waveform 2.71 3.09 3.18 2.99

CSIG

noisy 1.84 2.31 2.94 2.36
CoNNear-L 2.56 2.84 3.02 2.81
CoNNear 3.13 3.34 3.45 3.31

T-F 2.87 3.11 3.29 3.09
waveform 2.91 3.16 3.30 3.13

CBAK

noisy 1.43 1.57 1.85 1.62
CoNNear-L 2.99 3.24 3.52 3.25
CoNNear 3.94 4.04 4.07 4.02

T-F 3.63 3.78 3.88 3.76
waveform 3.93 4.02 4.06 4.00

at positive SNRs, and the CoNNear feature displayed slightly
superior performance. As the SNR decreased, the T-F feature
exhibited the most significant decrease in performance. T-F fea-
tures lack phase information and are therefore sensitive to SNR.
The other two tested features can leverage phase information to
enhance performance and were more noise robust. The wave-
form feature had a comparable performance to CoSE at SNR of
5 dB, obtaining a COVL of 3.18, while CoSE obtained a COVL
of 3.20. As the SNR decreased to negative, the gap between
the waveform and CoSE increased, with CoSE showing an im-
provement of 0.13 COVL over the waveform feature. This sug-
gests that the CoNNear feature can benefit speech enhancement
systems in adverse noise scenarios. Despite the added compu-
tation, it is still beneficial to use CoNNear features over the raw
waveform itself. This can also be appreciated in the samples we
provided in github.com/JasonCC001/CoSE.

To accommodate future applications, we also investigated
a low-latency configuration of CoSE with a minimum system
latency of only 6 ms, known as CoSE-L. While CoSE-L did
not demonstrate comparable performance to the other three ap-
proaches, it significantly reduced overall latency while achiev-
ing competitive results as seen in Table 1. This highlights its
potential for use in applications that require strict constraints on
system delay, such as hearing aids.

Figure 2 illustrates the distribution of COVL scores for the
three features considered at different SNR levels. CoSE ex-
hibited the least amount of variation across the range of SNRs,
and also demonstrated a more gradual decrease in performance
compared to the other two features as the SNR decreased. This
resilience of CoSE in challenging noise conditions may be
attributed to its ability to exploit sharply tuned filter proper-
ties, which have been previously demonstrated to enhance the
SNR by 4-5 dB when using a nonlinear TL model of cochlear
processing that captures longitudinal coupling [27]. Regard-
ing computational complexity, the average processing time per
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Figure 2: Distribution of COVL scores for different features un-
der various SNR conditions. Kruskal-Wallis test followed by
Dunn’s test with Bonferonni correction was used to calculate
the significance for each SNR. All the pairwise comparisons
within each SNR demonstrated statistical significance with a p-
value <0.001.

frame is 10.81 ms tested on an Intel i7-1265U PC.
We conducted additional experiments to compare our

model with top-ranking models such as DCCRN [4], SDD-Net
[28] and the baseline model NSNet2 from the DNS challenge,
and present these results and the model complexity in table 2.
Our tests were conducted on real recordings from the dev set of
DNS challenge 3. The results indicate that our model performs
comparably to NSNet2 (while one-third of the participants per-
formed worse than the baseline), but that there is still room for
improvement to achieve SOTA performance.

Table 2: Comparison to other SOTA SE model.

Para. (M) GMACs DNSMOS
noisy - - 2.91

NSNet2 2.8 - 3.24
DCCRN 3.7 14.36 3.37
SDD-Net 6.38 6.0 3.51

CoSE 18.3 15.85 3.19

4.1. Spectrogram analysis

We conducted a spectrogram analysis of enhanced speech sam-
ples for different input features in Figure 3. An example of
speech contaminated by music noise at an SNR of -5 dB is
presented in panel (a). T-F features exhibit noticeable residual
noise and an indistinct representation of harmonic components
in Figure 3a. It is also noteworthy that T-F features maintain
relatively complete components of speech. This difficulty arises
from the challenge of distinguishing between music noise and
speech, given the similarity between the spectra of music noise
and the harmonic components of speech as seen in Figure 3a.
In contrast, waveform features produced a more lucid spectro-
gram with less residual noise but with the loss of some speech
components compared with T-F features (Figure 3c). Notably,
CoSE demonstrated superior preservation of clear and abundant
harmonic components, while minimizing residual noise (Fig-
ure 3d). This suggests that CoSE combines the strengths of
both waveform and T-F features. It could be attributed to the

(a) Noisy0

1000

2000

3000

4000

5000

6000

7000

8000

fre
qu

en
cy

 (H
z)

(b) T-F

(c) waveform0

1000

2000

3000

4000

5000

6000

7000

8000

fre
qu

en
cy

 (H
z)

(d) CoSE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time (s) 
 (e) CoSE-L

0

1000

2000

3000

4000

5000

6000

7000

8000

fre
qu

en
cy

 (H
z)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time (s) 
 (f) clean

Figure 3: Spectrograms of noisy speech corrupted with mu-
sic noise at -5 dB SNR and enhanced speech from various ap-
proaches.

fact that CoNNear acts as a time domain frequency analyzer
with its capacity to sharply amplify the tone at center frequen-
cies over surrounding noise components [27]. Lastly, we also
investigated the spectrogram of enhanced speech by CoSE-L.
CoSE-L preserved more residual noise compared to the other
three approaches and manifested spectral leakage as seen in Fig-
ure 3e. This can be attributed to CoSE-L failing to track rapid
changes in noise power. Our future research will explore a new
architecture that can address these issues.

5. Conclusions

In this paper, we proposed a novel biophysically-inspired end-
to-end speech enhancement system. The system integrates
a differentiable feature extractor, CoNNear, which simulates
cochlear processing of the human auditory system. The ob-
jective evaluations indicate that compared to T-F and wave-
form features, CoSE demonstrated superior generalizability and
stronger robustness across diverse SNRs. Additionally, CoSE
combines the benefits of T-F and waveform features, resulting in
clearer and more harmonic speech components. Moreover, we
explored the low-latency configuration of CoSE, namely CoSE-
L, which targets applications with strict system delay require-
ments. CoSE-L significantly reduces the system delay to 6 ms
but lags behind CoSE’s performance. In our future research, we
will focus on developing novel approaches to improve the per-
formance of CoSE-L and reduce its model size, thereby making
it more compatible with embedded systems with limited power
consumption and low-latency constraints.
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