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Abstract
Robust audio anti-spoofing has been increasingly challeng-
ing due to the recent advancements on deepfake techniques.
While spectrograms have demonstrated their capability for anti-
spoofing, complementary information presented in multi-order
spectral patterns have not been well explored, which limits
their effectiveness for varying spoofing attacks. Therefore, we
propose a novel deep learning method with a spectral fusion-
reconstruction strategy, namely S2pecNet, to utilise multi-order
spectral patterns for robust audio anti-spoofing representations.
Specifically, spectral patterns up to second-order are fused in
a coarse-to-fine manner and two branches are designed for the
fine-level fusion from the spectral and temporal contexts. A
reconstruction from the fused representation to the input spec-
trograms further reduces the potential fused information loss.
Our method achieved the state-of-the-art performance with an
EER of 0.77% on a widely used dataset - ASVspoof2019 LA
Challenge.
Index Terms: audio spoofing detection, anti-spoofing, audio
feature fusion, deep learning

1. Introduction
Audio based automatic speaker verification (ASV) has a wide
range of applications due to the biometric authentication prop-
erty of voice [1], including multi-speaker speech recognition
[2], speech authentication-based telephone banking and voice-
based forensics [3]. To improve the robustness of ASV sys-
tems against increasingly complex deepfake techniques, various
methods have been devised [4, 5, 6] to identify audio spoofing.

The identification of audio spoofing is generally treated as
a binary classification task which classifies an audio recording
as genuine or spoofed. Early studies primarily focused on de-
vising hand-crafted features to anti-spoofing, such as Cochlear
Filter Cepstral Coefficient Instantaneous Frequency (CFCCIF)
[7], Linear Frequency Cepstral Coefficients (LFCC) [8] and
Constant-Q Cepstral Coefficients (CQCC) [9]. Recently, var-
ious deep learning methods have been proposed for audio deep-
fake recognition. For example, a convolutional neural network
(CNN) was first adopted with 2D audio spectrograms [10], then
the deep residual network (ResNet) methods (e.g., [11]) were
proposed to formulate the anti-spoofing problem as one-class
feature learning [12] to improve the generalisability. Based
on the effectiveness of sub-band spectrogram features in anti-
spoofing, a dual-band fusion algorithm was proposed [13]. To
characterise temporal relations in audio signals, a recurrent neu-
ral network (RNN) based method was proposed in [14]. More
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recently, a spectro-temporal graph attention network method
AASIST [15] was proposed to formulate spoofing patterns with
1st-order spectrograms (i.e., raw spectrograms).

Figure 1: Illustration of the performance for anti-spoofing on
ASVspoof2019 LA Challenge, which is highly sensitive with the
order of the spectral features used.

These existing methods are often based on a specific cate-
gory of audio features. However, as shown in Figure 1, different
types of features exhibit varying effectiveness in detecting dif-
ferent types of attacks. Thus, instead of using a single source of
spectral features as in AASIST, we suggest that diverse orders
of audio spectral patterns can benefit the speech anti-spoofing
in a complementary manner. For example, the 2nd-order spec-
trograms (i.e., power spectrograms) are suggested to be more
sensitive to the noise patterns in real-world speech [16]. As
shown in Figure 3, the power spectrogram can detect subtle
variations regarding spoofing clues in high frequency regions
with low amplitude values, compared with the raw spectrogram.

Therefore, in this study, a novel deep learning architecture,
namely S2pecNet, is proposed for robust anti-spoofing by using
multi-order spectrogram patterns, which are up to the second-
order including both raw and power spectrograms. Specifically,
raw and power spectral patterns are fused in a coarse-to-fine
manner and two branches are involved for the fine-level fusion
from the spectral and temporal contexts. To minimize the in-
formation loss during the feature learning and fusion, a recon-
struction mechanism is devised to reconstruct the fused repre-
sentation to its associated input spectrograms. Comprehensive
experiments on a commonly used dataset - ASVspoof 2019
LA, demonstrates the effectiveness of our proposed method,
S2pecNet, which achieves the state-of-the-art performance re-
garding the metrics minimum tandem detection cost function
(min t-DCF) [17] and equal error rate (EER) [18].

In summary, the key contributions of this work are: (i) a
novel deep learning based fusion architecture for audio anti-
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Figure 2: Illustration of the overall architecture for the proposed S2pecNet.

Figure 3: Illustration of raw and power spectrograms, where the
area in red bounding boxes represents high frequency regions.

spoofing with multi-order spectrograms; (ii) a coarse-to-fine fu-
sion mechanism with two branches that are involved for the
fine-level fusion from the spectral and temporal contexts; and
(iii) a reconstruction strategy to maintain the information in the
fused speech representations.

2. Proposed Method
Figure 2 illustrates the overall architecture of the S2pecNet
method. The 1st-order raw spectrogram and the 2nd-order power
spectrogram of an input audio are first fed into their encoders,
respectively. Next, the two encoded features are concatenated
and fed into a temporal-spectral fusion module in pursuit of a
spoofing-sensitive representation by exploiting the supplemen-
tary information between the two spectrograms. Additionally,
to minimise the potential information loss of the fused repre-
sentations, a reconstruction mechanism is introduced with two
decoders to reconstruct the fused features back to the original
raw and power spectrograms.

2.1. Raw Spectrogram and Power Spectrogram Encoding

S2pecNet takes an input audio waveform X from its first-order
and second-order spectral characteristics as input in pursuit of a
comprehensive representation of various spoofing patterns. For
the first-order patterns, the input audio’s raw spectrogram X1st

is fed into a CNN based encoder E1st to formulate an audio
feature map H1st ∈ RC×F×T , where C, F , and T denote the
number of channels, the number of spectral bins, and sequence
length, respectively. In terms of the second-order patterns, the
input audio’s power spectrogram X2nd is encoded by another

CNN encoder E2nd and a feature map can be obtained as H2nd ∈
RC×F×T . Note that E1st and E2nd are set to generate their
output feature maps with the same dimension.

2.2. Temporal-Spectral Fusion

The output feature maps H1st and H2nd of the two encoders are
with different spectral orders. Therefore, a temporal-spectral
fusion (TSF) module is devised to refine and fuse the two fea-
ture maps. TSF formulates the dependencies between the two
spectral domains and explores their complementary spoofing-
related patterns in a coarse-to-fine manner. Initially, a coarse
fusion step is performed by concatenating H1st and H2nd in a
channel-wise manner and applying a set of convolution filters
on the concatenated feature map to obtain a coarse fused rep-
resentation Hfuse. Then, to characterise finer spoofing-sensitive
features from Hfuse, an attention map A is obtained to highlight
its patterns that are more susceptible to spoofing by formulating
the long-term temporal dependencies and the spectral patterns.

To obtain A, two sub-attention maps Aspectral and Atemporal

are derived from two different contexts: one explores the tem-
poral context while the other explores the spectral context. In
detail, Hfuse is pooled along its temporal and spectral dimen-
sions, respectively, and we have:

Hspectral
fuse = maxt(|Hfused|),Htemporal

fuse = maxs(|Hfused|), (1)

where Hspectral
fuse ∈ RC×F×1, Htemporal

fuse ∈ RC×1×T , | · | refers
to an element-wise absolute operator, maxs is a global spectral
pooling operator and maxt indicates a global temporal pool-
ing operator. To this end, Hspectral

fuse contains global temporal in-
formation across frequency bins, and Htemporal

fuse contains global
spectral information across time. Next, the two attention maps
Aspectral ∈ RC×F×1 and Atemporal ∈ RC×1×T are obtained as:

Aspectral = Convs(H
spectral
fuse ),Atemporal = Convt(H

temporal
fuse ), (2)

where Convt and Convs denote the convolution layers for ob-
taining the two attention maps, respectively. To this end, the
final attention map A is obtained by: A = Aspectral ×Atemporal,
and the final fused representation can be derived as:

Hattentive = A×Hfused. (3)
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2.3. Raw Spectrogram and Power Spectrogram Decoding

To prevent information loss during the encoding procedure and
the feature fusion, a raw spectrogram decoder D1st and a power
spectrogram decoder D2nd are devised to reconstruct the in-
put raw spectrograms and power spectrograms, respectively.
Specifically, D1st consists of a series of deconvolution layers,
which takes the fused feature Hattentive to reconstruct the raw
spectrogram X̂1st . Similarly, D2nd applies deconvolution layers
to Hattentive and produce the reconstructed power spectrogram
X̂2nd . A raw spectrogram reconstruction loss L1st and a power
spectrogram reconstruction loss L2nd are introduced as:

L1st = ∥X̂1st −X1st∥,L2nd = ∥X̂2nd −X2nd∥. (4)

Minimizing the two losses aims to best reconstruct the original
raw and power spectrograms using the fused representation.

2.4. Spoofing Detection

A classifier further takes the fused representation Hattentive as in-
put to produce a binary classification prediction ŷ. The classifi-
cation loss Lcls is with a weighted binary cross-entropy (WACE)
to quantify the difference between the prediction ŷ and the
ground truth y, which can be formulated as:

Lcls = − 1

N

N∑

i=1

y · log(ŷ) + (1− y) · log(1− ŷ). (5)

2.5. Model Training

The overall loss L of the proposed method S2pecNet is with
the three loss terms mentioned above, including the raw spec-
trogram reconstruction loss L1st , the power spectrogram recon-
struction loss L2nd , and the classification loss Lcls. The relative
importance of them is controlled by a hyper-parameter α:

L = α(L1st + L2nd) + Lcls. (6)

3. Experiments & Discussions
3.1. Dataset and Evaluation Metrics

A widely used dataset, ASVspoof2019 LA [19], was adopted
for evaluation. It consists of both bona fide audio recordings
and 19 different types of spoofing attacks generated through
text-to-speech (TTS) [20] and voice conversion (VC) [21]. We
followed the same partitions of training, development, and eval-
uation as in AASIST. The training and development partitions
include 6 different spoofing attacks (A01-A06), while the eval-
uation partition includes 13 different attacks (A07-A19). The
overview of this dataset is listed in Table 1. For evaluation
metrics, the minimum tandem detection cost function (min t-
DCF) and the equal error rate (EER) were adopted. Moreover,
it has been demonstrated that the performance of spoofing de-
tection algorithms can vary greatly depending on initial random
seeds [5]. Hence, we report the average metrics across a number
of random seeds.

Table 1: Overview of the ASVspoof2019 LA dataset

Partition Bona fide Spoofed
# utterance # utterance attacks

Training 2,580 22,800 A01 - A06
Development 2,548 22,296 A01 - A06
Evaluation 7,355 63,882 A07 - A19

3.2. Implementation Details

A raw waveform was obtained with 64,600 frames (approxi-
mately 4 seconds). A sinc-convolution filter was used to obtain
the raw spectrogram of an input audio, which was further en-
coded through a ResNet encoder with 6 residual blocks. For
the power spectrogram, we formulated a 60-dimensional LFCC
features for a frame, of which the size is 20 ms with a hop size of
10 ms. A ResNet-18 was utilised as the power spectrogram en-
coder. The classifier for spoofing detection followed the setting
as in AASIST. Both CONVs and CONVt of the TSF module
consisted of two fully-connected layers, a batch normalization
layer, a SiLU function and a sigmoid function. Our S2pecNet
was implemented and trained using PyTorch for 100 epochs on
an NVIDIA RTX A6000 GPU with a batch size 48. An Adam
optimizer was adopted with a learning rate of 3 × 10−4 and a
cosine annealing learning rate decay.

Table 2: Comparison with the state-of-the-art methods. min t-
DCF and EER values were from AASIST, while # of parameters
and inference time were based on official implementations, in-
dicating the average inference duration for one-second audio.

Method #Param Runtime min t-DCF ↓ EER ↓
AASIST 297k 0.0052 0.028 0.83
RawGAT-ST [22] 437k 0.0049 0.034 1.06
MCG-Res2Net [23] 960k - 0.052 1.78
OC-Softmax [11] 12450k 0.0018 0.059 2.19
SE-Res2Net [24] 920k - 0.074 2.50

S2pecNet (Ours) 1284k 0.0072 0.024 0.77

3.3. Performance Comparison

Table 2 lists a performance comparison between our proposed
S2pecNet and the state-of-the-art methods. It can be observed
that S2pecNet outperforms these existing methods and shows
strong capability for robust audio spoofing detection. Specifi-
cally, Table 3 lists the comparison between our S2pecNet and
the state-of-the-art AASIST method regarding the best metrics.
Our S2pecNet demonstrates superior performance in terms of
both min t-DCF and EER, where our method improves the av-
erage EER by 25%. In addition, S2pecNet has superior or com-
parable performance on most attacks, except for the A17 attack
where the AASIST model outperforms ours with a significant
gap. A17 employed an acoustic model VAE-GAN [25], which
generate spectral shapes that are more realistic and detailed in
the high-frequency patterns. The power spectrogram can be
fooled by A17 since its modelling relies on observing subtle
variations in high frequency regions.

3.4. Ablation Study

3.4.1. Spectral Complementary Patterns

An ablation study was conducted to investigate the impact of
the complementary information between the two spectrograms.
Three settings were investigated under the same condition with
raw spectrograms, power spectrograms and fused spectrograms
(i.e., the representations obtained from S2pecNet), respectively.

As listed in Table 4, raw spectrogram is able to achieve sig-
nificantly better performance than power spectrogram on A17
and A19, while the power spectrogram demonstrates largely
better performance on A07, A10, A11, A12, A15, A16, and
A18. Since each setting demonstrated its advantages on differ-
ent attacks, the fused spectrograms can effectively exploit the
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Table 3: Comparison with AASIST. Results are based on EER and values in parentheses show the best readout.

System A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 min t-DCF EER (%)
AASIST 0.80 0.44 0.00 1.06 0.31 0.91 0.10 0.14 0.65 0.72 1.52 3.40 0.62 0.035(0.028) 1.13(0.83)
Ours 0.12 0.26 0.12 0.26 0.15 0.12 0.15 0.37 0.49 0.19 2.64 0.67 0.41 0.027(0.024) 0.84(0.77)

complementary information of them to achieve the best perfor-
mance in most attacks. Grad-CAM [26] was adopted to visu-
alise the attention maps on the two spectrograms. As shown in
Figure 4, S2pecNet is able to identify high frequency informa-
tion from the power spectrogram, while focusing on low fre-
quency information from the raw spectrogram, which confirms
that utilising two spectrograms can explore the complementary
information together for better spoofing detection.

Table 4: Performance comparisons regarding EER on raw spec-
trograms, power spectrograms, and fused spectrograms.

Attacks ↓ Raw spec. Power spec. Fused spec.
A07 1.58 0.10 0.12
A08 0.37 0.29 0.26
A09 0.02 0.06 0.12
A10 1.75 0.48 0.26
A11 0.81 0.18 0.15
A12 1.66 0.30 0.12
A13 0.22 0.26 0.15
A14 0.40 0.68 0.37
A15 1.30 0.61 0.49
A16 0.90 0.38 0.19
A17 1.81 31.46 2.64
A18 3.33 0.75 0.67
A19 0.59 1.39 0.41

Figure 4: Grad-CAM on spectrograms of two examples.

3.4.2. Impact of TSF Module

To evaluate the effectiveness of the TSF module, comparisons
were conducted with other fusion methods, including concate-
nation, early fusion, late fusion, and other state-of-the-art fu-
sion methods. As shown in Table 5, concatenation can achieve
reasonably good performance by avoiding information loss,
whereas many complex fusion methods lead to worse perfor-
mance, which suggest greater information loss. Our TSF mod-
ule can effectively exploit the complementary information be-
tween two spectral domains embedded with temporal depen-
dencies, and achieved the best performance.

Table 5: Comparisons with different fusion methods.

Method EER(%) ↓ min t-DCF ↓
Early-Fusion [27] 7.90 0.1800
Late-Fusion [28] 3.53 0.0848
MFFN [29] 3.24 0.0645
CEFNet(ACM) [30] 1.48 0.0465
SA-Fuser(w) [31] 1.32 0.0320
Concatenation 1.03 0.0340
TSF (Ours) 0.84 0.0271

3.4.3. Impact of Reconstruction Decoders

We further investigate the impact of the reconstruction decoders
which aim to retain the original information in the final fused
representation. As shown in Table 6, the reconstruction de-
coders can improve detection performance by retaining more
useful complementary information. Additionally, the settings
of hyper-parameter α are explored, which is used to balance the
detection and the reconstruction. The results in Table 7 indicate
that the best performance is achieved with α = 0.1.

Table 6: Ablation study on reconstruction decoders.

Method EER(%) ↓ min t-DCF ↓
w/o reconstruction decoders 0.93 0.0295
w/ reconstruction decoders 0.84 0.0271

Table 7: Hyper-parameter selection in terms of α.

α EER(%) ↓ min t-DCF ↓
1 1.02 0.0295
0.1 0.84 0.0271
0.01 0.96 0.0283

4. Conclusion
We present a novel method S2pecNet for audio spoofing detec-
tion by exploiting complementary information from multi-order
spectrograms. Specifically, a TSF module is devised to fuse the
two spectral representations in a coarse-to-fine manner. To min-
imize information loss, a fused representation is reconstructed
to its input spectrograms. Comprehensive experiments demon-
strate the superiority of S2pecNet over the state-of-the-art meth-
ods. As S2pecNet does not work well for some specific spoofing
attacks, utilising higher-order and flexible spectral patterns in a
data-driven scheme could be worth studying in future research.
Additionally, considerations should be given to advanced tech-
niques for spurious synthesis (e.g., [32]), to enhance the robust-
ness of audio spoofing detection.
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