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Abstract
Natural language understanding typically maps single utter-
ances to a dual level semantic frame, sentence level intent and
slot labels at the word level. The best performing models force
explicit interaction between intent detection and slot filling. We
present a novel tri-level joint natural language understanding
approach, adding domain, and explicitly exchange semantic in-
formation between all levels. This approach enables the use
of multi-turn datasets which are a more natural conversational
environment than single utterance. We evaluate our model on
two multi-turn datasets for which we are the first to conduct
joint slot-filling and intent detection. Our model outperforms
state-of-the-art joint models in slot filling and intent detection
on multi-turn data sets. We provide an analysis of explicit inter-
action locations between the layers. We conclude that including
domain information improves model performance1.

1. Introduction
Natural Language Understanding (NLU) is a field of natural
language processing (NLP) that studies how computers under-
stand natural human language. The concept of a hierarchical
semantic frame of domain-intent-slot has emerged to represent
the meaning of natural language. For each spoken utterance, the
domain is the conversational topic, e.g. restaurant. Intent repre-
sents the purpose of the user’s current utterance, like naming the
restaurant or confirming a reservation. A token level labelling
describes the semantic role of each word in the sentence, termed
the slots [1]. The tasks comprising the filling of the frame are
called domain classification (DC), intent detection (ID) and slot
filling (SF). SF is a sequence labelling task, whereas ID and
DC are classification tasks on the entire utterance. In Table 1,
we have the utterance (or turn) “Play the movie RMS Titanic”,
and its annotations for intent, domain, and slots. The slot an-
notation uses the Beginning-Outside-Inside (BOI) format. The
“movie” token is the entertainment type, and the span of tokens
“RMS Titanic” is the movie’s title. An NLU circuit should ac-
curately determine that the user intends the dialogue system to
play a movie and that the movie name is “RMS Titanic”. Or, the
NLU component classifies the user’s intent and finds the rele-
vant slot-value pairs. The domain here is entertainment; it is
from a multi-domain personal assistant dataset.

Most existing NLU datasets only include single-turn utter-
ances in a single domain, and so a large proportion of the liter-
ature focuses on determining how to categorise a single utter-
ance’s intent and slots [2]. However, several recent multi-turn
datasets allow annotation at the dialogue level and across multi-
ple domains [3, 4, 5, 6]. Dialogue state tracking systems widely

1A circuit diagram and associated code is available at
https://github.com/adlnlp/Tri-NLU

Table 1: An example sentence with its intent, domain and slot-
value pairs annotated

Utterance Play the movie RMS Titanic
Slot O O B-ent type B-title I-title
Intent play movie
Domain entertainment

use these multi-turn datasets. When given both the current utter-
ance and the dialogue history, they determine whether a specific
slot-value pair is mentioned in the current utterance [7].

1.1. Related work

Many researchers since 2013 have focused on presenting joint
models, which process information from both slot and intent
processing simultaneously to better capture the joint distribu-
tions of intent and slot labels in the utterance [2]. Earlier mod-
els used an implicit sharing of information between the tasks,
typically in the form of a common encoder, and then a joint
loss after parallel paths through the network concentrating on
ID and SF respectively [8, 9]. Better performance was exhib-
ited when the sharing of information between the tasks is ex-
plicit. In [10] a weighted sum of an RNN’s hidden states is
calculated at each time step and serves as the input for both the
SF and ID tasks. An attention mechanism produces a slot con-
text vector at each time step and a global intent context vector
incorporating the sequence-level information. The paper pro-
poses a “slot gate.” At each time step, the slot gate is a weighted
sum of the slot context vector and the intent context vector. The
slot gate informs slot prediction and is an early example of in-
tent2slot, where the parameters from the intent prediction are
also directly provided to each slot prediction at each time step.
Intent is only informed by the intent context vector so there is
no slot2intent aspect. Slot2Intent was then added by [11] who
proposed a model with an additional intent gate, which injects
contextual information from the slot-filling task into intent de-
tection. BERT was introduced in NLU for joint modeling by
simply taking the BERT encodings of the utterance to perform
softmax predictions on each token (including [CLS] for intent)
and calculating a joint loss [12]. Still, it was immediately ef-
fective due to the Transformer [13] architecture capturing coin-
cidence of words as more important in NLU than the temporal
order of arrival emphasised by RNN models. Other successful
models used BERT in combination with explicit sharing of in-
formation between tasks [14, 15]. [16] used explicit intent2slot
and slot2intent influence for their joint model, which uses an in-
tent probability distribution paired with BERT representations
of the tokens in the slot-filling task and uses the slot label prob-
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ability distribution along with BERT’s [CLS] token representa-
tion for intent detection.

Separate encodings for slot and intent representations at the
start of NLU circuits may enable different learned focus on the
data for different task purposes. [17] used a BiLSTM with
its stronger positional information for slot filling and a Trans-
former for intent semantics. The separate slot and intent rep-
resentations later interact via attention. In [18] a pair of Trans-
former encoders act on Bi-LSTM encodings of Glove word vec-
tors. Within the encoders some exchange of information takes
place, via the query vectors, self attention output, and via a com-
mon Feed Forward layer. While the model performs well on the
standard joint task benchmark datasets the ablations performed
could not explain which parts of the exchange of information
are contributing most.

There are several existing multi-turn datasets for dialogue
state tracking which with some pre-processing can be used for
joint NLU. One approach is to interpret slot, intent and domain
as a hierarchy in the semantic frame thus produced. [19] used
a private multi-domain data set and addressed the task by com-
bining domain and intent labels into one tag. In [20] domain is
classified at the level of the utterance using a simple attention
mechanism over RNN hidden states. [21] use dialogue action
as a domain proxy and detect it using a similar mechanism.

1.2. The Contribution

In NLU the standard datasets are single utterance annotated to
a dual level semantic frame. Performance on these benchmarks
is saturated [2]. In this paper, we extend the frame and explore
whether domain representations can then provide an additional
layer of context information to both SF and ID tasks, as the se-
mantics of an utterance are highly dependent on its domain. The
purpose of this research is to explicitly incorporate domain in-
formation into the joint model of SF and ID in order to improve
the performance of both tasks on multi-turn datasets. We note
that we do not track dialogue history. We use each utterance’s
intent, slot, and domain annotation in the same way we handle
single-turn datasets, albeit with an extra semantic level.
• We extend the use in NLU of multi-turn, tri-level semantic

frame datasets in slot filling and intent detection experiments.
• We propose a novel tri-joint intent-slot-domain model that

explicitly shares information among slot filling, intent detec-
tion, and domain classification. We show the inclusion of a
domain increases performance in the intent and slot tasks;

• We investigate the location of information exchange between
Transformer encoders aligned to each task to best improve ID
and SF performance.

2. Methodology
Our model architecture consists of three layers: the input em-
bedding layer, the tri-Transformer-encoder layer, and the tri-
directional joint NLU layer.

2.1. Input embedding layer

Three separate BERT2 encoders are trained on intent, domain
classification and slot filling tasks respectively. Each encoder
produces representations of dimension d = 768 for each token
in the input sentences, including [CLS] and [SEP] tokens. Our
sequence length is set to 20 for performance purposes.

2BERT-base-uncased model: https://pypi.org/project/pytorch-
pretrained-BERT/

Figure 1: Architecture of the Cross-Attention (left) and before-
feed-forward (right) Tri-Transformer-Encoder variants

2.2. Tri-Transformer-Encoder Layer

On top of each BERT instance in the input embedding layer we
place a two-layer Transformer encoder, to further process one
each of the intent detection, slot filling, and domain input em-
bedding data. Each single-layer Transformer encoder contains 4
successive sub-layers. 1) a multi-head self-attention (SA) layer
which performs the scaled Key-Query-Value Attention. 3 heads
are used. 2) A first Add & Norm layer which reconstructs the
SA outputs back to dimension d, adds it to the initial input
representations and performs normalisation 3) A position-wise,
fully connected feed-forward (FF) layer. 4) A second Add &
Norm layer which adds the output of the FF layer to its input
and normalises. All model embedding and sub-layers provide
outputs of size d. To produce the key (K), query (Q) and value
(V) inputs to each Transformer encoder the output of its input
embedding layer is passed through separate linear layers, one
for each of K, Q and V. Three variants are experimented with:
non-exchange, cross-attention and before-feed-forward. In the
non-exchange (NoEx) variant there is no information exchange
between the Transformer encoders. Thus, slot filling, intent de-
tection, and domain classification use distinct Transformer en-
coders. The other variants allow interaction between the slot en-
coder and the intent and domain encoders. Interaction between
intent and domain occurs later in the circuit.

2.2.1. Cross-Attention Variant

We introduce explicit information exchange between encoders.
In Figure 1 (left) the slot encoder is in the middle. Each SA
layer takes its own Q. The left (intent) and right (domain) SA
layers take the K and V from the middle encoder. The mid-
dle SA layer concatenates the K of the left (intent) encoder and
right (slot) encoder then projects down to size d for its K input.
Similarly it concatenates the V of the other two encoders then
projects down to size d for its V input. The procedure after-
wards is the same as the NoEx variant.

2.2.2. Before-Feed-Forward Variant

The before-feed-forward variant (BF) (Figure 1 (right)) feeds
the result of the SA layer of the middle (slot) encoder as the
input of the FF layer of the left (intent) and right (domain)
encoder FF layers. The middle unit concatenates the SA out-
puts of the left and right encoders then projects down to size
d for its FF input. The three outputs from any of the variants
of the tri-Transformer-encoder layer are HS = (hS

1 , ..., h
S
n),

HI = (hI
1, ..., h

I
n) and HD = (hD

1 , ..., hD
n ), each tuple con-

taining vectors of size d for each token in the input sequence
(the BERT CLS and SEP tokens are not used).
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2.3. Tri-directional Joint NLU Layer

Fusion and prediction take place in a tri-directional Joint NLU
layer on top of the tri-Transformer-encoder layer, which in-
volves direct incorporation of information from the other two
tasks into each task. Let ns, ni, and nd represent the number of
distinct slot, intent, and domain labels.

HI is flattened (the elements concatenated), has a tanh ac-
tivation applied, and is passed through a linear layer to size ni

upon which a softmax is performed to give a probability distri-
bution over the intent classes.

HI ′ = tanh(flatten(HI)) (1)

PI = softmax(HI ′WI + bI) (2)

Similarly we produce a probability distribution over the do-
main classes, while for the initial slot probability distribution,
we produce a probability distribution over the slot labels for
each token:

HD ′
= tanh(flatten(HD)) (3)

PD = softmax(HD ′
WD + bD) (4)

SF takes the semantic information from the whole sequence
at both the intent and domain levels to predict a slot label for
each word. We make a copy of the PI and PD for each to-
ken then concatenate them with the hidden states from the slot
Transformer encoder HS . These are then projected again to
vectors of length ns and a softmax produces slot label probabil-
ity distributions for each token which can be fed to the slot loss
function. With PI

′ and PD
′ the repeated copies of the proba-

bility vectors:

Sslot = (HS ⊕ PI
′ ⊕ PD

′) (5)
PS = softmax(Sslot ×Wslot + bslot) (6)

For ID and DC we use the slot sequence embeddings to
give more context. To map the slot sequence information to the
same dimension as intent and domain labels, we first flatten the
slot Transformer encoder output HS then concatenate it with
the intent and domain information and project to size ni and
nd respectively then perform softmaxes to provide inputs to the
intent and domain loss functions:

S = flatten(HS)⊕HI ′ ⊕HD ′
(7)

I = softmax(SW concat
I + bconcat

I ) (8)

D = softmax(SW concat
D + bconcat

D ) (9)

The tri-Joint NLU model is trained on the sum of the cross
entropy losses for slot filling, intent detection, and domain clas-
sification.

3. Experiment
Our proposed model performs three NLU tasks simultaneously.
Given an input utterance of tokens X = (x1, x2, ..., xT ), the
objective of our task is to produce a mapping:

NLU(X) = (Y slot, yintent, ydomain)

where yintent and ydomain are the singular intent and domain
labels of the utterance and Y slot = (yslot

1 , yslot
2 , ..., yslotT ) is a

tuple of slot labels positionally aligned with the input tokens.
We focus on the inclusion of the domain task on intent detec-
tion and slot filling, and we use the metrics from NLU of intent
accuracy and token based slot F1, with higher scores indicating
superior performance.

3.1. Implementation Details

All results are quoted for 20 epochs. The model has 29 million
parameters. Training time is 6 minutes for M2M and 19 minutes
for MultiWOZ on Google Colab GPU. Default initialisation is
used. Grid search is used for hyperparameter tuning with only
the final model described herein.

3.2. Multi-turn NLU Datasets

We use two English multi-turn datasets which are used as
benchmarks in the field of dialogue state tracking (DST).

Machines Talking To Machines (M2M) multi-turn
dataset3 uses virtual agent and virtual user-generated interac-
tions to replicate how people talk to each other in a goal oriented
dialogue. The M2M dataset covers two domains: restaurant and
movie. A dialogue, of average length 9.86 turns, is within one
domain. The average tokens per turn is 8.24. Each turn (or
utterance) is annotated with a dialogue act which we use as a
proxy for intent. There are 15 intents (e.g. greeting, inform,
confirm, request, affirm, negate, notify success), 6 restaurant
slots (price range, location, rest name,category, num people,
date, time) and 5 movie slots (theatre name, movie, date, time,
num people). There are 13974 training and 7998 test samples.

Multi-Domain Wizard-of-Oz (MultiWOZ) 2.24 is a
multi-turn dataset which is designed for dialogue state track-
ing (DST) tasks [5]. It aims to record a realistic conversation
between a tourist and a person working at city tourism informa-
tion desk. It is annotated for domain, intent and slot. Multi-
labels for domain and intent are combined into a single label.
There are 48 domains, 78 intents and 17 slots in 47897 train-
ing samples and 6251 test samples. The dialogues and turns are
longer than M2M, at 13.46 turns per dialogue and 13.13 tokens
per turn.

3.3. Baseline Models

Our baselines are the pre-trained neural network language mod-
els BERTbase and BERTlarge [22], and ALBERTbase and
ALBERTlarge [23], used in the JointBERT fashion of [12].
Then, in a separate test, we add an 2 layer transformer encoder
with no exchange to the pre-trained models. We also pass the
data through three benchmark joint intent detection and slot fill-
ing architectures, performing just the SF and ID tasks. We use
the Sequence-to-sequence joint model (Seq2Seq) of [9] and the
Slot-Gated joint model (Slot-Gated) of [10]. The third model
is Bi-LSTM encoder-decoder with stacked CRF [24](Bi-LSTM
+ CRF). The last encoder hidden state is used for ID, and as an
input to the slot sequence decoder which leverages an attention
unit to learn context vectors for decoder states. The stacked
CRF layer then forecasts slot labels after receiving the outputs
of the LSTM decoder [25]. We are the first to test these joint SF
and ID models on multi-turn dialogue scenarios.

4. Evaluation Results
4.1. Overall Performance5

We first compare the evaluation of our model the best Slot
F1 performance to different variants of pre-trained BERT. We
performed five-fold cross-validation on M2M and MultiWOZ

3M2M: https://github.com/google-research-datasets/simulated-
dialogue

4MultiWOZ 2.2: https://github.com/budzianowski/multiwoz
5For Table 2 and 3, note that we used Cross-Attention Variant inter-

action on M2M, and BF Variant interaction on MultiWOZ
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Table 2: Comparison results with BERT variations. SA indi-
cates inclusion of extra Transformer encoder layers.

M2M MultiWOZ
Model ID Acc SF F1 ID Acc SF F1
BERTbase 86.75 85.43 65.34 92.18
BERTlarge 87.53 89.23 72.49 95.32
ALBERTbase 86.54 85.42 65.31 91.87
ALBERTlarge 86.85 86.51 72.46 93.41
BERTbaseSA 92.36 88.54 69.76 95.81
BERTlargeSA 94.06 90.56 75.01 97.74
ALBERTbaseSA 90.43 88.14 70.24 96.32
ALBERTlargeSA 94.06 89.44 74.31 97.41
Our model 94.19 93.02 78.49 97.98
with BERTbase ±0.23 ±0.09 ±0.29 ±0.12

Table 3: Comparison results with joint NLU models

M2M MultiWOZ
Model ID Acc SF F1 ID Acc SF F1
Bi-LSTM + CRF 89.40 90.09 69.55 88.75
Seq2Seq [9] 92.50 91.72 66.41 85.43
Slot-Gated [10] 93.27 92.79 68.83 87.76
Our model 94.19 93.02 78.49 97.98
with BERTbase ±0.23 ±0.09 ±0.29 ±0.12

dataset, and the average of the experiments is reported in Ta-
ble 2. On both datasets, our model with BERTbase gives the
best results compared to eight BERT variants. Compared to the
best baseline model, BERTlargeSA, our model with Cross-
Attention variant interaction achieves 0.13% higher Intent De-
tection (ID) accuracy and 2.46% higher Slot Filling (SF) F1 on
the M2M dataset, and our model with BF variant interaction
scores 3.48% higher ID accuracy and 0.24% higher SF F1 on
the MultiWOZ dataset. We conclude that introducing the ex-
plicit interaction structure as in our model, rather than increas-
ing the model size, gives better performance on the NLU joint
task. While the extra independent Transformer encoder layers
improve each JointBERT model, the extra interaction opportu-
nities in our model give locations to better learn the joint distri-
bution of intent, domain and slot labels.

Table 3 shows the evaluation results compared to joint NLU
baseline models. Different to the baselines, our model includes
BERT embedding, the domain task, and explicit task interac-
tion in each direction between all 3 tasks. As seen in Table 2
the explicit interaction factor’s contribution is significant and it
is again the case here, as only the slot gated model has explicit
interaction and only in the intent2slot direction. The outperfor-
mance is much larger on the MultiWOZ dataset. We propose
that with the larger number of domains in this dataset that the
inclusion of a domain task is of greater benefit to the other tasks.

4.2. Effect of the Domain Classification Task

To investigate the effect of inclusion of each of the sub-tasks
we ran our model with only SF, only ID, then in all pairs from
{SF, ID, DC}, and then with all three sub-tasks. As illustrated
in Table 4, the inclusion of a domain task improves the result
of the same experiment without such a task in each case, ex-
cept SF to SF+DC for M2M. Including DC with an ID task
gives better improvement than including ID with SF, indicating
that the domain guides the intents present more than the slots
present. Then the inclusion of DC with ID and SF significantly

Table 4: Comparison results with different NLU tasks (ID - In-
tent Detection, SF - Slot Filling, and DC - Domain Classifica-
tion) performed

M2M MultiWOZ
NLU Tasks ID Acc SF F1 ID Acc SF F1
SF - 90.20 - 86.53
ID 91.39 - 73.38 -
SF + ID 93.73 91.42 77.91 92.43
SF + DC - 90.15 - 89.92
ID + DC 93.04 - 78.11 -
SF + ID + DC 94.19 93.02 78.49 97.98

±0.23 ±0.09 ±0.29 ±0.12

Table 5: Comparison results with transformer encoder variants

M2M MultiWOZ
Encoder Variant ID Acc SF F1 ID Acc SF F1
NoEx 82.38 92.69 76.00 93.82
Cross 94.19 93.02 79.83 90.92
BF 94.19 91.91 78.49 97.98

improves the SF performance, as DC improves ID, which then
flows down the semantic frame to a better SF result.

4.3. Effect of Transformer Encoder Interaction

We tested the three tri-Transformer-encoder variants. As illus-
trated in Table 5, ID performance benefits from some interac-
tion at this level; for M2M it is ambivalent to Cross-Attention
or BF, while MultiWOZ prefers Cross-Attention. This indi-
cates that the sharing of slot information with intent before self-
attention is more effective for ID than performing further self-
attention on the slot information and sharing the results. For SF
though, M2M gets a benefit from Cross-Attention but BF per-
forms worse than NoEx, while for MultiWOZ Cross-Attention
is worse than NoEx but there is a marked benefit from BF ex-
change. This indicates that, in MultiWOZ, SF benefits from
extra SA only on its own Q, K and V vectors, for the purpose
of extracting context information, before incorporating domain
and intent information in its FF layer. The longer turn length
of this dataset, and the multi-intent nature of some turns (albeit
joined into a single intent label), may contribute to this outcome.

5. Discussion and Conclusion
We move to datasets beyond the standard single-turn utterance
benchmarks used in NLU. We propose a novel model in which
slot, intent, and domain predictions explicitly exchange infor-
mation in two model layers. The inclusion of the domain task
improves performance in the slot and intent tasks. We achieved
superior results on two multi-turn utterance datasets compared
to baseline models and state-of-the-art joint models. By com-
paring our model to larger BERT models with more parameters,
we can posit that the boosting effect is due to the structure of
our model and can not be surpassed by larger BERT models.
As far as we know, we are the first to conduct domain classi-
fication, slot filling and intent detection experiments on multi-
turn datasets. While we utilise multi-turn datasets, we do not
use slot, intent and domain information from previous dialogue
turns. In future studies, we will incorporate such context. The
different datasets give conflicting results on the type of explicit
exchange between tasks that gives the best results.

703



6. References
[1] G. Tur and R. De Mori, Spoken Language Understanding: Sys-

tems for Extracting Semantic Information from Speech. New
York, USA: John Wiley and Sons, January 2011.

[2] H. Weld, X. Huang, S. Long, J. Poon, and S. C. Han, “A survey of
joint intent detection and slot filling models in natural language
understanding,” ACM Comput. Surv., vol. 55, no. 8, dec 2022.
[Online]. Available: https://doi.org/10.1145/3547138

[3] P. Shah, D. Hakkani-Tür, G. Tür, A. Rastogi, A. Bapna, N. Nayak,
and L. Heck, “Building a conversational agent overnight with di-
alogue self-play,” arXiv preprint arXiv:1801.04871, 2018.

[4] P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva,
S. Ultes, O. Ramadan, and M. Gašić, “MultiWOZ - a large-scale
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