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Abstract
Recently, multi-instrument music generation has become a

hot topic. Different from single-instrument generation, multi-
instrument generation needs to consider inter-track harmony be-
sides intra-track coherence. This is usually achieved by com-
posing note segments from different instruments into a signal
sequence. This composition could be on different scales, such
as note, bar, or track. Most existing work focuses on a particu-
lar scale, leading to a shortage in modeling music with diverse
temporal and track dependencies.

This paper proposes a multi-scale attentive Transformer
model to improve the quality of multi-instrument generation.
We first employ multiple Transformer decoders to learn multi-
instrument representations of different scales and then design
an attentive mechanism to fuse the multi-scale information.
Experiments conducted on SOD and LMD datasets show that
our model improves both quantitative and qualitative perfor-
mance compared to models based on single-scale information.
The source code and some generated samples can be found at
https://github.com/HaRry-qaq/MSAT.
Index Terms: music generation, multi-instrument, multi-scale,
Transformer

1. Introduction
Recently, symbolic music generation with deep learning tech-
niques has received much attention [1, 2, 3]. According to the
number of instruments in the generated music, the generation
task can be divided into single-instrument generation (SIG) and
multi-instrument generation (MIG) [4]. Most of the research so
far focused on SIG tasks, trying to produce coherent note se-
quences. Impressive progress has been achieved in this field,
particularly in generating long music [5, 6, 7, 8, 9, 10].

In recent years, more research attention has been moved
to multi-instrument generation tasks [11, 12, 13]. Compared
to single-instrument music, multi-instrument music is more
expressive by flexibly utilizing diverse instruments collabora-
tively. However, MIG is much more complex than SIG as it
needs to consider inter-track harmony besides intra-track coher-
ence. This indicates that MIG is more rewarding but also more
challenging.

Two important issues in MIG research are (1) how to com-
pose events of multiple instruments into a single sequence, or
multi-instrument event serialization; and (2) how to design a
machine learning model for learning such sequences, making
sure that both the intra-track and inter-track dependency can be
well represented. These two issues are clearly correlated and
should be considered together.

This work was supported by the National Natural Science Founda-
tion of China under Grant No.62171250.

Zhou et al. [11] proposed BandNet. They encoded the
multi-instrument music (Beatles’ songs) via a note-level zig-zag
scan strategy, i.e., from left-to-right (time dimension) and top-
to-bottom (track dimension), and then used a 3-layer LSTM-
RNN to learn the encoded sequence. Donahue et al. [12] de-
signed an event-based representation for multi-instrument gen-
eration called LakhNES. They designed 631 events about half
time-related events and half note-related events, and serialized
events from multiple instruments according to the occurrence
time. They used a Transformer to model the merged event
sequence. Ens et al. [13] presented a Multi-Track Music Ma-
chine (MMM), which preserves the whole sequence of musical
events for each instrument and concatenates sequences of multi-
ple instruments into a single sequence. They also used a Trans-
former model, with the hypothesis that the attention mechanism
can learn both the inter-track and the intra-track dependency
if the information of instrument and position is appropriately
encoded. Recently, Dong et al. [14] introduced a Multitrack
Music Transformer (MMT). They defined a new representation
that supports multiple instruments. Specifically, they encapsu-
lated a music event and related information, such as beat, posi-
tion, pitch, duration, and instrument, as a tuple, and serialized
the events in time sequence. The tuple sequence was modeled
by Transformer. Since the instrument information has been in-
cluded in the tuple, learning the inter-track and intra-track de-
pendencies is supposed to be easier for the Transformer model.

The composition can be conducted at different scales, i.e.,
at which position the serialization can move from one instru-
ment to another. Figure 1 illustrates the serialization process
at the note-level, the bar-level, and the track-level. From this
perspective, BandNet, LakhNES, and MMT are based on note-
level composition, while MMM is based on track-level compo-
sition. Different scales of composition offer different informa-
tion scopes for the model in both training and inference, and
require different positioning strategies when using Transformer
as the backbone.

Most of the existing studies are based on a single-scale
composition, which could have prevented the model from learn-
ing diverse music. This is because the music of different genres
tends to exhibit inter-track and intra-track dependencies on dif-
ferent scales. For example, Canon music is usually composed
in strict counterpoint by bar, so bar-level information is suffi-
cient for different instruments to look at each other. For the
piano concerto, it requires more attention to the musical infor-
mation of the piano track, so it is more appropriate for other
instruments to have track-level attention on the piano. For the
Jazz music with the theme of improvisation, higher frequency
variations in rhythm and accent [15] are often observed between
notes, so note-level cross-instrument attention is most useful.

In this paper, we propose a multi-scale attentive Trans-
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(a) note scale (b) bar scale (c) track scale

Figure 1: Multi-instrument composition at (a) note scale; (b) bar scale; (c) track scale. Each row represents an instrument and each
column represents a time step.
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Figure 2: Illustration of our proposed multi-scale representation model - (a) An example of the first eight beats of a song shown as
a multi-track piano roll. (b) The song is encoded by three scales of representations, from top to bottom are note-level, bar-level, and
track-level respectively. (c) The structure of the proposed multi-scale attentive Transformer model.

former model (MSAT) to leverage the advantages of compo-
sition methods at different scales. We first employ different
Transformer decoders to learn multi-instrument representations
of different scales and then design an attentive mechanism to
fuse the multi-scale information. Although it seems Trans-
former can learn the whole sequence no matter at which scale
the sequence is composed, we found the scale is crucial as the
decoder is autoregressive so can only see partial sequence. Our
experiments are conducted on two popular datasets, SOD and
LMD. Experimental results with both the objective evaluation
and the subjective listening test show that our proposed multi-
scale learning model achieves consistent performance improve-
ment compared to models based on single-scale composition.

2. Multi-instrument MIDI representation
In this paper, we encode multi-instrument events following the
MMT format [14]. For a music piece, it is represented as a
sequence of events x = (x1, ..., xn), where each event xi is
encoded as a tuple of six tokens:

(xtypei , xbeati , xpositioni , xpitchi , xdurationi , xinstrument
i ) (1)

The type token specifies the function of the tuple, e.g., start-
of-song, start-of-notes, end-of-song, etc. The remaining tokens
represent the beat of the event, the position in the beat, the note
and its duration, and the instrument. Note that since the in-
strument information is involved in each event, this format is
suitable for composition at flexible scales. More details about
the MMT format can be found in [14].

We then compose the events from multiple instruments into
a multi-instrument event sequence by serializing them at ei-
ther the note level, bar level, or track level. This results in
three multi-instrument representations, denoted by MMT-note,
MMT-bar, and MMT-track. Figure 2(a) presents an example of
a song. This song consists of three tracks corresponding to three
instruments. The representations at the three levels are shown
in Figure 2(b).

It should be highlighted that composition at different scales
possesses its own pros and cons. For example, note-level com-
position can better describe the correlation of two or more main
instruments at a particular time, while the track-level composi-
tion is better at learning the long-term dependency between a
main instrument and a couple of auxiliary instruments.

3. Multi-scale attentive Transformer
In this section, we will present our proposed multi-scale at-
tentive Transformer model (MSAT). This model is based on
a Transformer decoder [16, 17] that inherits from the MMT
model [14]. Compared to MMT which only supports the in-
put of single-scale representations, we design a separate Trans-
former decoder to learn the representation of each scale, and
introduce token-wise cross-scale attention to fuse information
at different scales.

3.1. Multi-head Transformer decoders

We duplicate the Transformer used in the MMT model [14]
three times, each corresponding to one of the three composition
scales: note, bar, and track. Each decoder consists of two com-
ponents. The first one is the pre-processing component which
contains a token-wise embedding layer and a positional encod-
ing operation [18]. And the second one is a series of Trans-
former decoder blocks, each containing a masked multi-head
self-attention layer and a feed-forward layer.

3.2. Token-wise cross-scale attention

To fuse the multi-scale information, we design two kinds of
token-wise cross-scale attention methods. As shown in Fig-
ure 2(c), the Transformer decoder at each scale outputs the em-
bedding vector of the input event. A linear projection is then
used to decompose the event embedding to six token embed-
dings, each corresponding to a particular token shown in Eq.(1).
Then for each token, an attentive fusion is designed to merge the
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embeddings of that token at the three scales. We experimented
with two designs for cross-scale attention, which differ in how
to compute the attention weights.

3.2.1. Global attention

In the global attention approach, we train a set of attention
weightsωn, ωb, ωt to scale the token embeddings from the note-
level, bar-level, and track-level representations, and the weights
are used for all the events. Note each token type has its own set
of weights.

Take the instrument token as an example. We define the to-
ken embeddings as hinst

n , hinst
b , hinst

t , which are derived from
note-level, bar-level, and track-level representations respec-
tively. The attention coefficients are then computed by Softmax:

αi =
exp(ωi)∑

k∈{n,b,t} exp(ωk)
,

where ωn, ωb, ωt are learnable.The fused instrument embed-
ding is computed as:

hinst =
∑

i∈{n,b,t}
αi h

inst
i .

3.2.2. Local attention

Unlike global attention, local attention focuses on computing
the attention weights according to the token embeddings. Also,
take the instrument token as an example. We define a learnable
instrument-dependent attention matrixW ∈ R3×N , whereN is
the dimensionality of the instrument embeddings. First compute
the attention score α̂{n,b,t} as follows:

α̂{n,b,t} =W · [ hinst
n , hinst

b , hinst
t ],

where α̂{n,b,t} ∈ R3×1. Then the fused instrument embedding
is computed by:

hinst =
∑

i∈{n,b,t}
αi h

inst
i ,

where
αi =

exp(α̂i)∑
k∈{n,b,t} exp(α̂k)

.

Note that the attention weights are different at each time, which
is why it is named ‘local’ attention.

4. Experiments
4.1. Data

Two publicly available multi-instrument datasets were used in
our experiments, Symbolic Orchestral Database (SOD) [19] and
Lakh MIDI Dataset (LMD) [20]. We first discarded those in-
struments without pitch, such as drums, and selected songs with
4/4 time. We used MusPy [21] to process the data. Finally, we
obtained 5,742 songs from SOD and 5,916 songs from LMD.
For both datasets, we split 80% of the data for training, 10% for
validation, and 10% for testing.

4.2. Model Settings

Firstly, for the single-scale approach, we directly employed the
MMT model [14] and trained three single-scale models, de-
noted by MMT-note, MMT-bar, and MMT-track.

For the multi-scale approach, although the input involves
three representations of different scales, there should be only

one single-scale output (target). We chose the bar-level repre-
sentation as the target and found better performance than choos-
ing others. Moreover, to make the model training more stable,
the decoders of MMT-note and MMT-track are employed in the
multi-scale model (weight fixed) as the decoders for the note-
level and track-level representations. Therefore, only the bar-
level decoder and the attentive module need to be trained. We
refer to the model trained with the global attentive fusion as
MSAT-GA and the local attentive fusion as MSAT-LA.

In our experiments, all the training configurations are the
same as MMT, and the models are trained to minimize the sum
of the cross-entropy losses of different tokens in an autoregres-
sive way.

To evaluate the generation models, we designed two gener-
ation tasks as follows:
• Task 1. Instrument-informed generation: a sequence of in-

strument codes are extracted from a ground true music and
given to the model. The model then generates the note se-
quence. Music samples generated in this task are used for the
objective evaluation.

• Task 2. N-beats continuation: all instrument and note events
in the first N beats are provided to the model. The model
then generates subsequent note events that continue the input
music. In our experiments, N is set to 16. The generated
music samples are used for the subjective listening test.

It is worth mentioning that we did not adopt the uncondi-
tioned generation in our experiment. We are more concerned
with the quality rather than the flexibility of different models
in a multi-instrument generation. Therefore, during the genera-
tion, we will pre-define the desired combination of instruments
(Task 1) or the ‘sample’ for generation (Task 2).

4.3. Objective evaluation

4.3.1. Metrics

Several metrics are designed to evaluate the performance of the
models on the instrument-informed generation task. To evaluate
intra-track coherence, we follow [22, 23] and measure the pitch
class entropy, scale consistency, groove consistency, and empty
measure rate for each instrument.

For inter-track harmony, we compute the inter-instrument
similarity which is the standard deviation of the pitch class en-
tropy of different instruments. According to music theory, the
higher the similarity between the pitch distributions of two in-
struments, the more instrumental harmonious the music will
sound.

Finally, we define instrument consistency as the correlation
between the desired number of instruments and the number of
instruments in the generated music in terms of bar. This metric
reflects the controllability of the model on instruments.

For these metrics, we hope they are close to the values of the
ground truth music where the instrument codes are extracted.

4.3.2. Results

For each model, 399 and 544 music pieces were generated using
ground-truth samples from SOD and LMD respectively. Table 1
shows the evaluation results. Firstly, let us compare the three
single-scale models. Combining different types of evaluation
metrics, we can observe MMT-bar outperforms MMT-note and
MMT-track as a whole. This observation suggests that the bar-
level representation takes into account both the temporal coher-
ence of each instrument and the harmonic correlation between
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Table 1: Performance comparison of our proposed model against three single-scale models.

pitch
class entropy

scale
consistency

groove
consistency

inter-instrument
similarity

instrument
consistency

SOD Ground truth 2.813 92.81 93.99 0.215 1.000

single-scale MMT-note 2.017 96.16 95.88 0.793 0.593
MMT-bar 2.195 96.87 97.97 0.647 0.720
MMT-track 1.936 96.32 98.55 0.719 0.380

multi-scale MSAT-LA 2.164 96.61 98.08 0.611 0.747
MSAT-GA 2.403 92.11 97.36 0.614 0.695

LMD Ground truth 2.423 96.01 94.94 0.398 1.000

single-scale MMT-note 1.590 98.30 97.43 0.827 0.493
MMT-bar 1.625 99.00 97.49 0.621 0.604
MMT-track 1.900 97.55 98.68 0.634 0.281

multi-scale MSAT-LA 1.796 98.28 97.51 0.578 0.668
MSAT-GA 1.873 96.98 98.11 0.642 0.539

different instruments, thus suitable for multi-instrument music
generation.

Secondly, our proposed MSAT model outperforms the
single-scale competitor MMT-bar in almost all the evaluation
metrics, with either local attention or global attention. The two
MSAT models obtain the best performance in most of the met-
rics. All the results demonstrated that the multi-scale learn-
ing approach allows the model to discover more inter-track and
intra-track dependency from representations composed at dif-
ferent scales.

4.4. Subjective listening test

To further assess the quality of the music samples generated
by our proposed model, we invited 28 participants to conduct a
listening test. Most of the participants are music producers or
music practitioners. Each participant is required to listen to 10
groups of tests, and each group contains three music samples
that were generated by MMT-bar, MSAT-GA, and MSAT-LA
in the 16-beat continuation task. The participants were asked
to choose their favorite generation, considering the following
criteria:

• Coherence: Is it temporally coherent? Is the rhythm steady?
Are there many out-of-context notes?

• Richness: Is it rich and diverse in musical textures? Are there
any improper repetitions and variations? Is it too boring?

• Arrangement: Are the instruments used reasonably? Are the
instruments arranged properly?

• Quality: Overall quality of the sample.

Results are presented in Table 2. Firstly, we found that
MSAT-GA and MSAT-LA gained more votes on Richness and
Arrangement while losing some votes on Coherence. This in-
dicates that MSAT-GA/LA obtained better inter-track harmony
while sacrificing a bit of intra-track coherence. Besides, it can
be observed that from the overall preference, MSAT-LA re-
ceived the most votes, suggesting that this model is favored in
terms of overall performance.

Table 2: Subjective listening test results by preference voting.

Votes Coherence Richness Arrangement Quality Overall

MMT-bar 102 84 93 93 372
MSAT-GA 85 99 88 86 358
MSAT-LA 93 97 99 101 390

4.5. Ablation study

In this section, we try to gain a deeper understanding of how the
cross-scale attention looks into the representations composed
at different scales. We plot the attention weights ωn, ωb, ωt in
the global attention model, as shown in Figure 3. Note these
weights are token-wised.

Firstly, for the type token, the attention weights are almost
the same among the three scales. This is reasonable since this
token is not very informative to the composition scale. Sec-
ondly, for beat and instrument, the bar-level scale dominates the
attention weights. We conjecture that these two tokens repre-
sent the main difference between the composition schemes, and
because the bar-level representation is the target in the model
learning, it would be easy for the model to converge if it got
more information from the bar-level input. Finally, for position,
pitch, and duration, the information of the track-level composi-
tion seems more prominent, indicating that the long-term infor-
mation is also important to guide inter-instrument harmony.

The above observations validate our multi-scale learning
approach: it is not a single-scale input that dominates in the
learning; instead, information from the inputs of the three scales
seems all important.

Figure 3: Global attention weights.

5. Conclusions
This paper proposed a multi-scale attentive Transformer model
(MSAT) to improve the quality of multi-instrument music gen-
eration. Instead of learning from the multi-instrument represen-
tations composed at a single scale, MSAT learns representations
composed at three scales, i.e., note, bar, or track. Experimental
results on the objective evaluation and subjective listening test
showed that our proposed MSAT model obtained better perfor-
mance than the models trained with representations composed
at any single scale. In the future, we will consider a more flexi-
ble structure to achieve multi-scale learning and improve intra-
track coherence in multi-instrument music generation.
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