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Abstract
In this paper, we propose a Self-heuristic Speaker Content
Disentanglement (S2CD) model for any to any voice conver-
sion without using any external resources, e.g., speaker la-
bels or vectors, linguistic models, and transcriptions. S2CD is
built on the disentanglement sequential variational autoencoder
(DSVAE), but improves DSVAE structure at the model archi-
tecture level from three perspectives. Specifically, we develop
different structures for speaker and content encoders based on
their underlying static/dynamic property. We further propose a
generative graph, modelled by S2CD, so as to make S2CD well
mimic the multi-speaker speech generation process. Finally, we
propose a self-heuristic way to introduce bias to the prior mod-
elling. Extensive empirical evaluations show the effectiveness
of S2CD for any to any voice conversion.
Index Terms: voice conversion, any to any, disentanglement

1. Introduction
Voice conversion (VC) aims to convert the timbre of a speech
from a source speaker to a target speaker while preserving the
content of the source speech. Based on the use of training data,
VC models can be categorized into parallel and non-parallel
ones, where the former is technically simpler but less practical
while the latter is more challenging and attractive. Precisely,
non-parallel VC can be further divided following a “src to tgt”
naming convention, where src and tgt belong to {one, many,
any}. One represents an extreme case where a single speaker is
used either in training or inference. In contrast, many and any
involve multiple speakers, and the difference is that speakers are
seen in many but unseen in any, during the training.

In the last decade, numerous methods have been pro-
posed for non-parallel VC. Although these methods generally
share the same idea of learning speaker and content repre-
sentations, the technical details (e.g., whether using automatic
speech recognition (ASR) guided techniques [1, 2, 3], or text-to-
speech (TTS) guided techniques [4, 5, 6], or mixed techniques
[7, 8, 9]) and external dependencies (whether using speaker la-
bels/vectors [10, 11, 12], transcriptions [13, 14, 15], or other
auxiliary models [16, 17, 18]) differ considerably under differ-
ent “src to tgt” VC scenarios.

Phonetic posterior-grams and pre-trained speaker models
were widely used for the content and speaker representations
in any to one VC where the speech corpus of a target speaker
is fixed, e.g., [19, 20]. Recently, discretized self-supervised
speech representations are proposed to boost any to one VC.
For instance, Huang et al. [8] propose to use VQW2V [21]
to eliminate speaker information and represent speech by dis-
crete speech units. SoftVC [7] achieves further improvements
by using Hubert [22] to extract soft speech units. Moreover,

there are also methods utilizing off-the-shelf TTS techniques to
extract speaker-independent linguistic features, e.g., Cotatron
[13] takes advantage of Tacotron2 [23] and Mix-Guided VC [9]
combines ASR and TTS encoders. However, all these models
usually require sufficient training data with rich transcriptions
and speaker labels, e.g., [9, 13], and even a large amount of
external well-annotated data, e.g., [7, 8, 19], which are very ex-
pensive to collect.

Many to many VC is a more flexible setting that converts
voice among speakers within a speaker training set. Mainstream
related research contains generative adversarial network (GAN)
based [24, 25, 26, 27] and (variational) autoencoder ((V)AE)
based [16, 28, 29, 30]. The key idea of GAN-based VC meth-
ods is to learn speaker-indistinguishable representation through
adversarial learning. An early work CycleGAN-VC [24] uti-
lizes adversarial and the cycle-consistency losses, but is limited
to one-to-one mapping. StarGan-VC [25] improves to many-
to-many mapping by adding another domain classification loss.
CC-GAN [26] further uses a speaker-conditional encoder and a
multi-output discriminator to simplify the model structure and
boost the VC performance. Recently, Ma et al. [27] develop
an SGAN-VC using subband block to perform style transfer for
each frequency. Note that GAN-based VC methods usually re-
quire speaker labels/vectors to train the discriminator. More-
over, the learning objective of these methods usually consists of
several losses, e.g., up to 7 losses in [27]. Balancing such many
losses is challenging, and the generalization is thus limited.

AE/VAE-based method is another popular research line for
many to many VC. Basically, these methods aim to disentangle
the speaker and content information from speech data. The very
first work [28] simply uses a conventional VAE to disentangle
the content embedding, and then incorporate it with a pretrained
speaker vector for VC. A later work ACVAE-VC [16] uses a
speaker-conditioned content posterior and introduces an auxil-
iary classifier for speaker prediction. Instead of conditioning on
speaker attributes, [29] exploits a pitch tracker to construct an
F0-conditioned AE. Note that all these methods need an auxil-
iary speaker model outside VAE/AE structure. Recently, Luong
et al. [30] propose a disentanglement VAE based on a directed
graph that directly models speaker and content latent factors,
avoiding the need for external speaker vectors.

Compared with Many to many VC, any to any VC is a
more general scenario, where VC happens between any speak-
ers even they are unseen during training. Due to its generaliz-
ability, any to any VC research becomes increasingly popular.
Pioneering works, AutoVC [10] and AdaIN-VC [31], follow an
AE structure and use information bottleneck to separate speaker
and content information. A later work VQVC+ [32] uses vector
quantization (VQ) to extract discrete linguistic representations
and eliminate the speaker information. However, these meth-
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Figure 1: Graphic models of S2CD-VC.

ods still reply on the pretrained speaker models. VQMIVC [33]
and IDE-VC [34] improve VQVC+ and AutoVC, repsectively,
by explicitly building speaker encoder and adding a mutual in-
formation (MI) loss, while AGAIN-VC [35] improves AdaIN-
VC through a unified encoder and an activation to guide the
training. Although technically sound, VQMIVC and IDE-VC
suffers from the complex training process due to the difficulty
in estimating MI, and AGAIN-VC is not robust to balance the
quality of speech audio and the similarity of speaker style.

Except for pretrained speaker models, some any to any VC
works also take advantage of other external models. Both [36]
and [37] adopt wav2vec [38] to extract linguistic embedding,
while [39] utilizes speaker verification model [17] to facilitate
the speaker modelling. The availability and quality of external
models play an important role in the VC success of these meth-
ods. GAN-based ideas are also exploited in any to any VC,
e.g., [11, 12, 40]. However, same as stated in many to many
VC, these methods usually stack a large amount of losses,
specifically 5 in [40, 11] and 7 in [12], and thus lack of gener-
alizability. There are also methods achieving VC by TTS-based
system, e.g., YourTTS [6] and STYLETTS [15], with rich tran-
scription or phonemes available for training.

Very recently, VAE-based methods have shown a great suc-
cess in any to any VC. In [41], the authors propose a vari-
ant of β-VAE [42] that is specifically for disentanglement of
content and speaker representations by two individual latent
factors. A later work [43] further investigates a more power-
ful VAE model, disentangled sequential VAE (DSVAE) [44],
specifically disentangling time-invariant and time-variant infor-
mation from sequential data. Such VAE-based methods are el-
egant for any to any VC in the sense that they fully rely on the
strong disentanglement capacity of model itself without using
any external resources (e.g., pretrained linguistic models, tran-
scriptions and speaker labels/vectors) and auxiliary losses (only
reconstruction and KL losses are used in the learning objective).
A very latest work CDSVAE [14] further shows that the VC per-
formance can be boosted using external models or transcriptions
to introduce content bias to the prior modeling.

In this paper, we aim to propose a novel VC method without
using any external resources for any to any VC. We build on
DSVAE that explicitly models speaker and content latent fac-
tors. However, different from [14, 43] that directly adopt the
original structure of DSVAE [44], we develop more advanced
submodule structures at the model architecture level to better
serve for VC purpose, meanwhile, without adding extra losses
to vanilla DSVAE objectives. Specifically, we propose the fol-
lowing three improvements.

Firstly, we design different structures for content and
speaker encoders, rather than to use the same one, i.e., BiL-
STM, as [14, 43, 44] do. Considering that content and speaker
latent factors encode dynamic and static information, respec-
tively, we propose to use BiLSTM and transformer without po-
sitional embedding as the base model of content and speaker

encoders, correspondingly. We intuitively and empirically show
that such design benefits the disentanglement1.

Secondly, to further enhance the benefit of disentanglement
to VC, we enforce our model to follow a generative graph as
shown in Fig.1. Ideally, identical utterance of different speak-
ers is generated from the same content latent factor but differ-
ent speaker latent factors, while different utterances of the same
speaker should share the same speaker latent factor. As parallel
data is absent, we put more focus on the latter. Specifically, we
propose to feed positive pairs of utterances (utterances from the
same speaker) into speaker encoder to model a shared speaker
latent factor by using an average function.

Thirdly, we also introduce related bias to the prior mod-
elling. However, instead of using external speaker or linguistic
models, we propose a self-heuristic way. We build the prior di-
rectly using speaker and content representations sampled from
the corresponding posteriors. With these improvements, we ob-
tain our Self-heuristic Speaker Content Disentanglement model
(S2CD) for any to any VC. To summarize, the main contribu-
tion of this paper is as follows.
• We present a comprehensive review of existing non-parallel

VC methods, discussing their technical details and external
dependencies under different “src to tgt” VC scenarios.

• We propose an S2CD model for any to any VC without using
any external resources. S2CD-VC is based on DSVAE, but
improves DSVAE from three perspectives.

• We conduct extensive empirical evaluations, including com-
parison with existing methods and property analyses, on
S2CD to show its effectiveness for any to any VC.

2. The Proposed Method
2.1. Preliminary

We start with the problem formulation of any to any VC. Let
X = [x1, ...,xT ] be a T -segment speech, represented by acous-
tic features, e.g., melspectrogram, of a speaker sampled from
S = [s1, ..., sn]. Our goal is to train a model with the speech
data of multiple speakers from S without using any external
resources, for any to any VC. The test includes two scenar-
ios, namely seen2seen: si → sj where si, sj ∈ S and un-
seen2unseen: si → sj where si, sj /∈ S.

As our S2CD uses DSVAE as the backbone, we introduce
DSVAE herein. The latest DSVAE architecture adopted in [14]
is shown in Fig.2(a). The input melspectrograms are fed into a
shared encoder, which consists of several convolutional layers,
to extract the deep acoustic features, followed by a BiLSTM
to explore the temporal information. Two groups of mean and
variance networks are applied to model the posterior of speaker
and content latent factors, i.e., qθ(zs|X) and qθ(z

c
t |x<t). The

new representations zc1, ..., zcT and zs are correspondingly sam-
pled. Each zct is then concatenated with zs and passed to a
decoder for reconstruction. Finally, the reconstructed melspec-
trograms are gone through a vocoder to construct the waveform.
The prior of zs and zc1:t is a standard Gaussian distribution and
modelled by an autoregressive LSTM, respectively. Both poste-
rior and prior distributions follow the conditional independence
assumption same as [44]. The overall learning objective then
consists of reconstruction and KL-divergence parts:

L = Lrec + λsLklds + λcLkldc , (1)

1Uing different structures for encoder is a general improvement for
DSVAE [44] beyond VC task, as it essentially aims to strength the dis-
entanglement of static and dynamic information.
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Figure 2: S2CD and DSVAE architecture comparison.

where

Lrec = Ep(X)Eqθ(X|zs,zc
1:T

)[−log(qθ(X|zs, zc1:T ))],
Lklds = Ep(X)[KL(qθ(z

s)|X)||pθ(zs)],
Lkldc = Ep(X)[KL(qθ(z

c
t |zc<t)||pθ(zct |zc<t))].

In the test phase, given Xsrc and Xtgt, we first feed them into
the well-trained DSVAE, and then concatenate each zcsrc with
zstgt. The converted melspectrogram can be obtained by passing
the above cancatenated vectors to the decoder. We then use a
vocoder to convert the melspectrogram to the waveform.

2.2. The proposed S2CD

DSVAE is an elegant model for any to any VC as it does not re-
quire any external resources or introduce any other constraints,
during training. It succeeds in VC thanks to its strong ca-
pability of disentangling the static and dynamic information
from speech data. In this paper, we further improve DSVAE
at the model architecture level so that we can preserve the
above elegance of DSVAE for VC. We call the improved model
Self-heuristic Speaker Content Disentanglement (S2CD) for
VC. The underlying intuition of the proposed improvements
is to strengthen the consistency of the static-dynamic disentan-
glement and speaker-content embedding modelling. In other
words, we further enhance the disentanglement capability of
the model on the one hand, and on the other hand ensure that
static and dynamic latent factors indeed encode the speaker and
content information, respectively. Next, we introduce the three
improvements we have proposed in details.

2.2.1. Customized Encoder Structure

As shown in Fig.2(a), in DSVAE, speaker and content encoders
share a BiLSTM module, followed by an RNN to construct tem-
poral latent factors for the content encoder and a pooling mod-
ule to extract a global latent factor for the speaker encoder. This
structure is reasonable but could result in the temporal infor-
mation leaking to the speaker encoder due to the shared BiL-
STM. To avoid so, we propose to use customized structures
for the two encoders. Precisely, we keep the structure of the
content encoder, i.e., BiLSTM+RNN, but utilize a transformer
encoder without positional embedding for the speaker encoder,
i.e., Transformer+Pooling. By doing so, we can structurally
make the speaker encoder avoid using temporal information.

Looking deeper, if we randomly shuffle the temporal or-
der of frames to form a shuffled sequence, the static factors
of the original and shuffled sequences should be ideally equal
or at least close. BiLSTM+Pooling fails to make this happen,
but Transformer+Pooling qualifies as it is permutation-invariant
[45]. Essentially, such customized encoder structure enables
better disentanglement of static and dynamic information.

2.2.2. Positive Pair-wise Training

Our ultimate goal is not just to achieve a better disentangle-
ment, but to obtain a better disentanglement that benefits the VC
task. Thus, our second improvement focuses on the alignment
of static-dynamic disentanglement and speaker-content embed-
ding modelling. To do so, we propose a generative graph for the
generation of multi-speaker speech as shown in Fig.1, and en-
force our model to follow the generative graph. Fig.1 shows two
ideal cases, one modelling the generation of the same utterance
from different speakers and another modelling that of different
utterances from the same speaker. As we focus on non-parallel
VC, we use the latter to guide the disentanglement.

Specifically, during training, we propose to feed pair-wise
utterances from the same speaker into the speaker encoder. We
then use an average function over the obtained two speaker vec-
tors to construct the shared one. Afterwards, the shared speaker
latent factor will be used for reconstruction for both utterances.
By doing so, we can explicitly ensure that the pair-wise utter-
ances are generated from the same speaker latent factor. Herein,
we only use pair-wise utterances, but the number of positive ut-
terances can be extended to more. Moreover, instead of simply
using the average function, more sophisticated functions can be
investigated. These are potential points worthy further study.

2.2.3. Self-heuristic Prior Modelling

CDSVAE [14] shows that involving content bias in the prior
modeling improves DSVAE that uses standard priors. However,
it requires auxiliary resources, e.g., transcriptions, to obtain the
content prior knowledge. Thus, our third improvement tries to
model a good prior without using external resources. We pro-
pose a self-heuristic way, that is, we use the sampled speaker
and content representations to build their respective priors. The
intuition behind is that a good disentanglement leads to a good
sampled new representation containing speaker/content infor-
mation rich enough to construct the corresponding priors. We
note that such a self-heuristic way may have a weaker prior
modelling compared with CDSVAE, but the shining point is its
independence on any external resources.

2.2.4. Overall Architecture

In summary, we propose three improvements over DSVAE in
the model architecture level. Fig.1(b) shows the architecture
of our proposed S2CD, and the difference from DSVAE can
be clearly observed compared with Fig.1(a). All the mean and
variance networks are dense layers, and the decoder consists of
a prenet and a postnet following [10]. We use Melgan [46] as
vocoder due to its fast inference speed. The vocoder is pre-
trained and not fine-tuned in S2CD training.

3. Experiments
3.1. Experimental Configuration

We use VCTK dataset [47] for experimental study. Following
[14], we randomly select 10 speakers forming unseen speaker
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Figure 3: Visualizations of speaker latent embedding in the unseen2unseen scenario.

Table 1: The MOS test with 95% CI.

Methods Seen2Seen Unseen2Unseen
Naturalness Similarity Naturalness Similarity

AutoVC 1.37 ±0.06 2.85 ±0.24 1.58 ±0.21 3.46 ±0.18

DSVAEours 3.18 ±0.09 2.93 ±0.18 3.38 ±0.10 3.15 ±0.11

CDSVAEours 3.84 ±0.10 3.31 ±0.18 3.69 ±0.10 3.27 ±0.10

DSVAE [14] 3.76 ±0.07 3.83 ±0.06 3.65 ±0.07 3.89 ±0.05

CDSVAE [14] 4.03 ±0.04 4.12 ±0.07 3.93 ±0.06 4.06 ±0.07

S2CDw/o T&P 4.05 ±0.09 3.91 ±0.13 3.99 ±0.08 3.82 ±0.11

S2CDw/o T 4.11 ±0.06 4.02 ±0.09 4.04 ±0.08 3.92 ±0.08

S2CD 4.32 ±0.04 4.21 ±0.07 4.22 ±0.06 4.02 ±0.07

set, while the rest speakers are used for training. We extract
melspectrogram as features with a framing configuration of
64ms/16ms, and set feature dimension to 80. We select a seg-
ment of 64 frames for training. Adam is used as the optimizer
with fixed learning rate of 1e-4. The dimension of the convolu-
tional layers in shared encoder is 256, and that of speaker and
content latent factors is set to 64. Batch size is set to 256. For
λs and λc, we use 0.1 and 1, respectively, according to the grid
search. All the experiments are done on NVIDIA A100 GPU.

3.2. Subjective Evaluation

We first evaluate S2CD by the mean opinion score (MOS) test.
For both seen2seen and unseen2unseen scenarios, we randomly
select 30 test cases. Each test case includes two utterances from
a source speaker and a target speaker randomly selected from
the corresponding speaker set, as well as the converted utter-
ance. Ten listeners evaluate the converted utterances by giving
scores from 1 to 5 on naturalness and similarity. The final score
is calculated by averaging all the collected results. The demo
samples are shown in this link2.

We compare with several baselines including AutoVC [10],
DSVAE and CDSVAE [14]. As the code of [14] is not public,
we implement it according to the paper. Unfortunately, we fail
to reproduce the scores3. Thus we show the results of our run
and also the paper-reported numbers. For S2CD, we introduce
two more variants, namely S2CDw/o T&P and S2CDw/o T . We
gradually add the three improvements to DSVAE, firstly the
pair-wise training, resulting in S2CDw/o T&P , followed by self-
heuristic prior modelling, resulting in S2CDw/o T , and lastly
customized encoders, giving us the final S2CD.

The MOS results are shown in Fig.1. As can be seen, our re-
produced DSVAE and CDSVAE results are generally lower than

2https://wmaiga.github.io/S2CD/
3The model structure is well stated in [14], and we suspect the non-

reproducibility is due to some imperceivable differences of our imple-
mentation from the official one.

Table 2: Phoneme classification accuracy (%).

Methods Mel only DSVAE S2CDw/o T&P S2CDw/o T S2CD
Accuracy 59.75 47.2 63.95 64.47 64.77

the paper-reported ones, but the trend is the same, i.e., CDSVAE
improves DSVAE. We mainly compare with the reported scores.
For our methods, S2CDw/o T&P achieves comparable and bet-
ter results compared with DSVAE on similarity and natural-
ness, respectively, but is still not as good as CDSVAE, espe-
cially on similarity. By adding self-heuristic prior modelling,
S2CDw/o T generally catches up with CDSVAE with better nat-
uralness but weaker similarity. Further taken customized en-
coders into account, S2CD finally outperforms CDSVAE in av-
erage. Note that S2CD has another superiority over CDSVAE,
i.e., its independence on external resources. The performance
gain from S2CDw/o T&P to S2CD also shows the effectiveness
of each improvement for VC.

3.3. Latent Factors Analyses

We also analyze the disentanglement performance by (1) visu-
alizing speaker latent embeddings and (2) performing phoneme
classification with content latent embeddings. We show the
t-SNE visualization and phoneme classification results on the
test speaker set in Fig.3 and Table.2, respectively. DSVAE ob-
tains a clear cluster pattern in Fig.3(a). However, the worst
phoneme classification accuracy of DSVAE, 47.3% even worse
than mel only, is also observed. This shows the room of fur-
ther improvements on disentanglement. For S2CDw/o T&P ,
it has looser clusters but better phoneme classification perfor-
mance than DSVAE, which overall balances the performance
gain. This is consistent with their comparable MOS in Table.1.
S2CDw/o T achieves similar distributed clusters but clear better
accuracy than DSVAE. Thus, we observe the performance gain
of S2CDw/o T over DSVAE on MOS. For the final S2CD, it
achieves not only denser clusters but also higher accuracy com-
pared with all the other baselines, and thus is the best on VC
performance. This set of experiments show that our proposed
improvements indeed lead to a better disentanglement for VC.

4. Conclusions
In this paper, we first present a comprehensive review of exist-
ing non-parallel VC methods under different “src to tgt” sce-
narios. We then focus on the latest “any to any” model DSVAE,
and propose an S2CD model with three improvements, i.e., cus-
tomized encoder structures, positive pair-wise training, and slef-
heuristic prior modelling, over DSVAE. Empirical results show
S2CD is a promising method for “any to any” VC.
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